The place to be in dentistry!

Meet the Straumann management in your town!

Stay updated

on interesting Straumann news and posts on Facebook, Twitter, YouTube, LinkedIn and Google+

STARGET - Did you know?

Sergio Piano: “With the Straumann® Pro Arch protocol, the patient is already reassured of the final result from the very beginning of the procedure”

  An interview with Dr. Sergio Piano, Italy. The “Straumann® Pro Arch” concept is an efficient and simple method to treat the edentulous patient with immediate loading, providing a rehabilitation that not only produces high-quality esthetic results but also proves cost-effective. This concept, supported by scientific literature, strongly focuses on the pre-operative planning, allowing for a less invasive approach and a reduced number of implants. The pre-visualization of the final result, already available from the outset of the procedure, leads to an optimization of the implant placement and an improvement in the final esthetic appearance. Dr Piano, you are a very well reputed Straumann® Pro Arch fan, and before Straumann’s edentulous treatment concept was globally rolled-out you developed the “Wonderbridge Protocol” for edentulous patients. We would like to know more about your expertise and this protocol. How did it originate? How did you treat edentulous patients before this protocol and what is different with this approach? Until around ten years ago, the treatment used for edentulous patients was based on a large number of implants placed in the available bone followed by an immediate loading procedure. In cases where the bone was lacking, it was necessary to carry out a bone augmentation and to load the implants after integration. Obviously, this meant that a removable provisional prosthesis was needed. For these reasons, after a few years I realized that, in many cases, this traditional approach was far too complex, protracted, and also costly and, although Dr. Malo had set a new standard for the treatment of edentulous patients, the simplified approaches available to us at the time more often than not led to what I felt was not such a satisfactory esthetic result. Therefore, reflecting on this dilemma, I came up with the idea of creating a protocol whereby a reduced number of implants was placed, not only in line with the available bone but also on the basis of ideal prosthetic planning. In this way I succeeded in achieving a most satisfying final esthetic result whilst, at the same time, preserving the simplicity of the original treatment. Moreover, it also involved a considerable reduction in the cost of the procedure, thus making it more attractive to the patient. In defining the “Wonderbridge Protocol”, I would say that it is along the lines of an immediate loading technique on a limited number of implants, but inspired by a different philosophy. That was the solution established before the Straumann® Pro Arch became fully available on a global scale.                                 What are the key points of this protocol compared to other solutions currently available on the market? In addition to the advantages already mentioned, in my opinion there are a couple of important aspects to be considered. The approach can be considered less invasive and less radical compared to standard simplified approaches. In fact, with the latter type of approaches there is a fixed geometric positioning of the implants, together with a pre-determined dramatic reduction of the alveolar bone in the frontal area. This leads to a pre-defined standard clinical situation that doesn’t actually allow for a completely personalized prosthetic solution, whereas with the Straumann® Pro Arch approach and the Wonderbridge protocol you have the option to replace the “geometric” approach with an “anatomical” one. This means that there is neither a dramatic reduction of bone nor a pre-determined angulation of the implants, thanks to their positioning being in line with the anatomy of the jaw. This makes the procedure less invasive compared to complex treatments using bone grafting/augmentation, easier to be performed by the dentists and, importantly for the patient, results in a more natural final appearance. Moreover, the most remarkable key point is that, thanks to the prosthetic planning stage at the outset, the dentist is able to have a pre-visualization of the final result prior to starting the surgical procedure. This set-up can then be shown to the patient so as to establish whether their personal opinion is in line with their expectations. In this way, from the very beginning of the procedure, the patient is already reassured of the final result. “With the Straumann® Pro Arch approach and the Wonderbridge protocol you have the option to replace the “geometric” approach with an “anatomical” one. This means that there is neither a dramatic reduction of bone nor a pre-determined angulation of the implants, thanks to their positioning being in line with the anatomy of the jaw. This makes the procedure less invasive compared to complex treatments using bone grafting/augmentation, easier to be performed by the dentists and, importantly for the patient, results in a more natural final appearance.” When and why would you recommend this protocol? This is a solution that is considered to be more than valid in cases where the patient has a reduced amount of bone in the posterior area due to the presence of anatomical obstacles, and where a less invasive solution is of major importance. Furthermore, this protocol, in offering such an efficient and rapid solution, is highly advantageous for patients who would previously have anticipated a protracted procedure and so could easily have been discouraged from embarking on the treatment in the first place. Such cases could include patients with hopeless teeth or those with fully edentulous jaws. In the COIR article* we have seen cases documented in 2008. How long have you actually been applying this protocol to your patients? And in what way, if at all, has it changed? I started in 2007, initially with just a couple of patients, using a basic technique that has been perfected over the years. Then, in 2008, a protocol was established that took into consideration the need for an affordable procedure, whilst also achieving an esthetically-pleasing result. In fact, the 21 maxillary cases documented in the COIR study were treated with this approach – using a laser-welded framework and resin veneering – which produced extremely positive results: that is, no issues were noted either with the implants, fractures or prostheses. As a consequence, in order to reach the highest level of quality for the protocol, over the years both the framework and the veneering material have been improved, and new innovative approaches like CADCAM workflow, guided surgery, and others have been integrated, thus offering not only an economically viable solution, but also a state-of-the-art prosthetic result. “We can say that Straumann has now created a comprehensive and complete range of products that fully support our various solutions for the treatment of edentulous patients.” Are the type of components used considered important in supporting this protocol? In fact, it is thanks to the components available today that we are able to provide these high-quality results for our patients. When I initially started to carry out the Wonderbridge procedure, it was specifically with Straumann® Bone Level implants and the Straumann® MultiBase abutment portfolio. It emerged that these components performed really well, even though in certain specific clinical situations, for instance involving very low bone density or extreme implant inclination, it was, at times, possible to encounter certain difficulties. However, today, this protocol is successfully based on the Straumann® Pro Arch solution and its main components, Straumann® Bone Level Tapered implants and the screw-retained abutment portfolio, and these components truly represent a notable improvement in the challenging treatment of edentulous patients. Principally, the introduction of the Straumann® Screw-Retained Abutment portfolio has enabled us to work with a wide range of components capable of meeting all the treatment criteria, allowing the dentist to find the ideal combination for each individual prosthetic realignment, without having to make compromises. This product family also includes components that facilitate the differentiation of the prosthesis type used in terms of material, technique and shape. In fact, gluing connectors (Straumann® Variobase copings) give a further option for the fabrication of the prosthesis, making the use of this system very flexible, including in the lab. Furthermore, we now also have at our disposal high-quality additional alternatives for the final prosthesis, such as the customized framework produced in the Straumann® Milling Center, based in Germany, or the production of frameworks from one of Straumann’s partners, namely Createch Medical, a high-precision manufacturer of customized framework and prosthetic components based in Spain. In addition, the Straumann® Bone Level Tapered implant, launched a few years ago, has allowed us to gain increased implant stability for immediate loading when dealing with poor bone conditions. In fact, in my own practice in Genoa on a daily basis BLT implants replace BL ones whenever a Straumann® Pro Arch procedure is performed. So we can say that Straumann has now created a comprehensive and complete range of products that fully support our various solutions for the treatment of edentulous patients. “Nowadays, the demand among patients for an implant-supported fixed prosthesis that combines an esthetically-pleasing result with an affordable cost is very high. Consequently, dentists are having to turn to alternative and viable solutions, like the Straumann® Pro Arch.” To what extent do you think this kind of solution is needed today? Nowadays, the demand among patients for an implant-supported fixed prosthesis that combines an esthetically-pleasing result with an affordable cost is very high. Consequently, dentists are having to turn to alternative and viable solutions, like the Straumann® Pro Arch. For this reason, over the past two years there has been strong demand for more information about this protocol and its implementation, to the point that a large number of courses have been set up in several countries to meet this need. To give you a rough idea of the interest in this approach, over the past 4 years alone I have held more than 20 one- and two-day courses and presented several lectures, talking to almost 1000 colleagues and participants in countries ranging from the Balkan region, Arabia to Eastern Europe. In Italy alone we have held a dozen events for more than 500 participants. Personally speaking, I believe that, in the everyday dental practice, a solution like the Straumann® Pro Arch should not be overlooked as it can be considered a most viable and invaluable solution for the dentist whilst also successfully meeting the patient’s expectations, both in terms of affordability and esthetics. * Clin Oral Implants Res. 2015 Mar 24. doi: 10.1111/clr.12580) Sergio Piano, DDS Italy Private practitioner in Genoa, Italy. Graduated DDS cum laude at the University of Genoa in 1988. Visiting Assistant in 1991 – 1992 at the University of Geneva, Departments of Fixed Prosthodontics (Prof. Belser), Periodontology (Prof. Cimasoni) and Oral Surgery (Prof. Fiore-Donno, Dr. Bernard). Active Member of SIO (Italian Society of Osseo-integration) and IAED (Italian Academy of Esthetic Dentistry). Fellow of the ITI (International Team for Implantology). Regular national and international lecturer on surgical and prosthetic topics in Implant Dentistry. The post Sergio Piano: “With the Straumann® Pro Arch protocol, the patient is already reassured of the final result from the very beginning of the procedure” appeared first on STARGET COM.

ITI World Symposium 2017: Prepare for an exciting journey

  The International Team for Implantology (ITI) is holding the next edition of its flagship event – the ITI World Symposium – in 2017 from May 4 to 6 in Basel, Switzerland. The scientific program along with the faculty list have been published on the ITI World Symposium 2017 website at The main theme of the meeting is “Key factors for long-term success”. It’s not just about the scientific program – it’s the 360° experience! The people, the event architecture, the infrastructure. David Cochran and Stephen Chen guide you through the state-of-the-art environment tailored to give you the ultimate #ITIWS2017 experience. Find out why Prof. Irena Sailer and Prof. Urs Belser think you need to be in Basel, Switzerland for the ITI WS 2017. Scientific program chair Prof. Daniel Wismeijer on how new ideas help us to look at things in different ways: Why we from Straumann think you have to be in Basel at the ITI WS 2017! Talented young specialists – the next generation of implant dentistry! REGISTER NOW For more information and to register for the most important implant dentistry meeting in 2017, go to the official ITI World Symposium website: WEBSITE Keys to the entire treatment cycle from diagnosis through treatment to aftercare More than 80 speakers from all over the world will be sharing their expertise in a series of plenary and parallel breakout sessions over three days. They will be providing keys to the entire treatment cycle from diagnosis through treatment to aftercare, offering sustainable long-term solutions. In addition to the field’s leading international speakers, the faculty also includes a broad cross-section of young and talented specialists from around the world, representing a diversity of evidence-based approaches and the next generation of implant dentistry. The Scientific Program Committee led by Prof. Dr. Daniel Wismeijer has designed a practically oriented program of information and approaches that participants can immediately implement in daily practice. To ensure that the take home messages are directly accessible to as broad an audience as possible, all plenary sessions will be simultaneously translated from English into nine languages. What will be important tomorrow?  “With the theme ‘key factors for long-term success’, the aim is not only to highlight what is state of the art today but also what will be important tomorrow – looking at the technology and approaches that are set to direct practice in the near future,” explained Daniel Wismeijer, Chair of the Scientific Program Committee. “Our speakers are providing keys to various areas within implant dentistry and are also showing how they can be used to open doors to best practice.” The role of technology in our lives is the theme of keynote speaker Dr. Kevin Warwick, a leading cybernetics researcher at the University of Coventry whose area of study is artificial intelligence, robots and cyborgs. Kevin Warwick will be taking a look at how healthcare is developing in the light of technological advances. By contrast, the groundbreaking work of the ITI in the field of implant dentistry during its 37-year history forms the subject of a presentation by Dr. h.c. Thomas Straumann and Prof. Dr. Daniel Buser. Pre-Symposium Corporate Forum The World Symposium scientific program is complemented by a half-day Pre-Symposium Corporate Forum presented by Straumann, Morita and botiss, where opinion leaders talk about their experience with the latest products and technologies. The extensive industry exhibition provides participants with a perfect opportunity to visit key companies, see what’s new and find out how they can apply it in daily practice. THE LOCATION The ITI World Symposium is being held at the Messe Basel within the halls designed by renowned Basel architects Herzog & de Meuron. The unique facade of twisted aluminum bands encloses the ITI World Symposium 2017 setting that is inspired by the dynamic world of modern airports. Bustling departure gates, quiet lounges and a lively exhibition zone provide ample opportunity for the event’s more than 4,200 anticipated visitors to meet and network while taking part in an exciting scientific journey. This is further facilitated by an innovative technology service that allows participants to exchange and gather information using a small interactive device. Any information gathered continues to be accessible and up to date in the “cloud”, which eliminates the need to produce and carry around large amounts of paper during the event. By choosing Basel as the event location, the ITI is returning to its roots and home base. The city itself provides a beautiful backdrop to the event, with a charming old town that is easily accessible from all the hotels and the congress venue. ABOUT THE ITI The International Team for Implantology (ITI) is an academic association that unites professionals around the world from every field of implant dentistry and related disciplines. It actively promotes networking and exchange among its membership of currently more than 15,000. ITI Fellows and Members regularly share their knowledge and expertise from research and clinical practice at meetings, courses and congresses with the objective of continuously improving treatment methods and outcomes to the benefit of their patients. In 36 years, the ITI has built a reputation for scientific rigor combined with concern for the welfare of patients. The organization focuses on the development of well-documented treatment guidelines backed by extensive clinical testing and the compilation of long-term results. The ITI funds research as well as Scholarships for young clinicians, organizes congresses and continuing education events, and runs more than 600 Study Clubs around the globe. The organization also publishes reference books such as the ITI Treatment Guide series and operates the ITI Online Academy, a peer-reviewed, evidence-based e-learning platform with a unique user-centric approach. The post ITI World Symposium 2017: Prepare for an exciting journey appeared first on STARGET COM.

Gary Finelle: Sealing Socket Abutment technique (SSA) – immediate implant placement in molar site (Straumann® Tissue Level Implant, botiss cerabone®, Variobase®)

  A 65-year old woman presented at our clinic for implant and prosthetic restoration of upper left (#27) and lower left molars (#36, #37) (Fig. 1). The patient’s medical history revealed no contraindications to dental implant therapy and restorative treatment. According to the patient, her lower left molars had been extracted more than 30 years ago. For tooth #27 the patient reported discomfort due to contact with the opposing edentulous crest, sensitivity during mastication and mobility of the tooth. PICTURE DOCUMENTATION Fig. 1 finelle01 Fig. 2 finelle02 Fig. 3 finelle03 Fig. 4 finelle04 Fig. 5 finelle05 Fig. 6 finelle06 Fig. 7 finelle07 Fig. 8 finelle08 Fig. 9 finelle09 Fig. 10 finelle10 Fig. 11 finelle11 Fig. 12 finelle12 Fig. 13 finelle13 Fig. 14 finelle14 Fig. 15 finelle15 Fig. 16 finelle16 Fig. 17 finelle17 Fig. 18 finelle18 Fig. 19 finelle19 Fig. 20 finelle20 Fig. 21 finelle21 TREATMENT PLANNING Tooth #27 was diagnosed as non-conservable due to localized periodontal disease associated with furcation involvement (degree 2, mobility 2) and a probing depth of more than 10 mm in the distolingual areas (Fig. 2). The tooth was vital but sensitive to percussion. Moreover, the soft tissue position was intact. No signs of acute infection were noted at the time of clinical examination. Based on radiographic examination (Cone Beam Computerized Tomography), the class A septum configuration (Smith & al. 2013) and apical bone volume were favorable and compatible with: 1. predictable sufficient insertion torque 2. adequate 3-dimensional prosthetic position. Immediate implant placement after extraction of #27 was planned (Atieh & al. 2010) in order to reduce length of treatment and number of surgeries in comparison with the delayed approach. The implant selected for this procedure was a Straumann® Tissue Level Implant 4.8 × 12 mm, Wide Neck. SURGICAL PROCEDURE A major challenge encountered while undertaking immediate implantation in the molar area is the complexity of obtaining primary wound closure and coverage of the extraction site. Accordingly, this proposed protocol involves the chairside fabrication of a CADCAM abutment to seal the alveolar socket (SSA: Sealing Socket Abutment) immediately at the time of extraction-implantation (Finelle & al. 2016). Atraumatic flapless tooth extraction was performed by odontosection (Figs. 3,4) and separation of the supracrestal gingival fibers with periotomes. After extraction, the alveolar socket was liberally irrigated with sterile saline solution and cleaned with curettes to remove granulation tissue. A Straumann® Standard Plus Implant 4.8×12 WN was placed according to the instructions for use. The implant bed was prepared in the middle of the septum as virtually planned at the diagnostic stage (Fig. 5). The insertion torque was recorded during the placement and reached 30N/cm. Xenograft bone substitute (botiss cerabone®, granules 0.5-1mm, 1×0.5cc, Botiss) was packed to fill the alveolar socket surrounding the implant (Fig. 6). (Chu et al. 2012). To obtain closure of the socket at the time of extraction, an innovative protocol has been established to allow digital impression and immediate customized CADCAM abutment at the time of the surgery. A scan body (Cerec, Sirona) was connected to the platform of the implant to allow the intra-oral scanner (Omnicam, Sirona) to capture virtually the 3D position of the implant (Fig. 7). Immediately after acquisition, the SSA was designed on the prosthetic software (Fig. 8). The design process consists of: 1. Reproducing the outline of the previous freshly extracted molar in order to create a mechanical seal between the oral cavity and surgical site. The transmucosal portion is designed with a concave shape in order to accommodate for proper biological space (Finelle 2011, COIR). 2. Creating an ideal emergence profile to guide soft healing and positioning during the maturation process (Dual Zone concept Tarnow, Chu). The digital file was then exported to an in-office milling system (MCXL, Sirona) for fabrication of the SSA abutment (telio CAD 16, Ivoclar) in a chairside manner (Fig. 9). During the milling (15 minutes), sterile gauze was placed on the surgical site and post-operative recommendations were given to the patient. After milling, adhesive cement (Multilink abutment, Ivoclar) was used to assemble the SSA device onto the Variobase abutment for Cerec (Variobase C WN, Straumann) (Fig. 10). Finally, the SSA was inserted into the implant (with manual insertion torque) to support the surrounding soft tissues and provide a seal to the bone substitute material without the use of a biological membrane (Fig. 11) (Chu & al. 2012). Immediately after the surgery, post-operative periapical radiographs were taken to verify the proper position of the implant (Fig. 11). At the one week follow-up, the patient reported an uneventful post-operative recovery. The clinical examination at one week showed favorable soft tissue healing with minor inflammation (Fig. 12). After 12 weeks of osseointegration, soft tissue around the SSA abutment was healthy, and the buccal contour was maintained (Fig. 13). Removal of the abutment at the time of impression-taking showed a healthy and anatomical prosthetic emergence profile and a well-designed transmucosal portion (Fig. 14). A digital impression (Omnicam, Cerec, Sirona) using Scanbody for Cerec was taken for implant-supported restoration (Fig. 15). Finally, an implant screw-retained crown was designed (Fig. 16) on the Cerec Software (Cerec 4.4) and milled out of a monolithic lithium disilicate block (Emax CAD, Ivoclar) (Kapos & al. 2014). Before sintering, a blue CAD crown was tried in to validate the shape, contact point and occlusion (Figs. 16). The emergence of the implant screw axis allowed for a screw-retained prosthesis as originally planned (Fig. 17). The crown was stained and the occlusal grooves were readjusted to improve occlusal anatomy. The implant crown was bonded to a titanium base abutment adapted for the Cerec implant block (Variobase C, Straumann) with a resin cement (Multilink Hybrid Abutment, Ivoclar). At the time of final crown delivery (Fig. 18), we noticed the adequate emergence profile of the peri-implant soft tissues precisely fitting with the transmucosal anatomy of the ceramic crown. Final insertion torque (35N/cm) was applied, and the access hole was covered with restorative composite (Gænial A2, GC) (Fig. 19). A post-operative periapical radiograph was taken to verify the seating and marginal integrity after insertion (Fig. 19). While #27 was undergoing restoration, #36 and #37 were treated by surgical and restorative procedures, and two screw-retained single crowns were inserted (Fig. 20) in order to restore adequate prosthetic space (Fig. 21). FINAL RESULT At the 6 month follow-up, the clinical situation was stable. No biological or technical complications were reported. Clinical assessment showed a stable soft tissue position and volume (buccal contour and papilla). This case report demonstrates the clinical benefits in terms of the surgical and prosthetic aspects of the molar treatment after extraction: 1. Surgically, the CADCAM device behaves as a mechanical barrier that ensures stabilization of the blood clot in a confined alveolar socket space favorable for the regeneration process. The SSA aims to “seal” the socket without the use of invasive techniques such as flaps, incisions and sutures. As there is no attempt at a primary closure procedure, the mucogingival junction is not displaced and the papilla architecture is maintained in its original anatomical position. Consequently, post-operative discomfort is expected to be very low. 2. From a prosthetic standpoint, the transmucosal portion of the SSA is shaped as described: a. Submergence profile (closer to the implant) with a narrow portion to accommodate for biological space and proper soft tissue healing (Finelle & al. 2015). B. Emergence profile (closer to the cervical margin) matching the anatomy of the previous existing natural crown (Chu & al. 2012). CONCLUSION This case report describes an innovative approach based on a chairside fabrication of a suitable intra-operatively milled CADCAM healing device after immediate implant placement. As more and more clinics and dental offices are equipped with chairside milling machines, the protocols detailed in this article aim to offer a simplified workflow for single molar implant treatment (from extraction until final crown delivery) by reducing the length of treatment and the number of surgeries and clinical steps (and the morbidity). References Smith RB1, Tarnow DP. Classification of molar extraction sites for immediate dental implant placement: technical note. Int J Oral Maxillofac Implants. 2013 May-Jun;28(3):911-6. doi: 10.11607/jomi.2627. Finelle G, Papadimitriou DE, Souza AB, Katebi N, Gallucci GO, Araújo MG. Peri-implant soft tissue and marginal bone adaptation on implant with non-matching healing abutments: micro-CT analysis. Clin Oral Implants Res. 2015 Apr;26(4):e42-6 Atieh MA, Payne AG, Duncan WJ, de Silva RK, Cullinan MP. Immediate placement or immediate restoration/loading of single implants for molar tooth replacement: a systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2010;25:401–15 Chu SJ, Salama MA, Salama H, Garber DA, Saito H, Sarnachiaro GO, Tarnow DP. The dual-zone therapeutic concept of managing immediate implant placement and provisional restoration in anterior extraction sockets. Compend Contin Educ Dent. 2012 Jul-Aug;33(7):524-32, 534 Finelle G, Papadimitriou DE, Souza AB, Katebi N, Gallucci GO, Araújo MG. Peri-implant soft tissue and marginal bone adaptation on implant with non-matching healing abutments: micro-CT analysis. Clin Oral Implants Res. 2015 Apr;26(4):e42-6 Finelle G, Popelut A Immediate implantation after extraction: focus on the use of CAD-CAM Sealing Socket Abutment (SSA) – JPIO -2016 (Accepted for Publication, French) Kapos T, Evans C. CAD/CAM technology for implant abutments, crowns, and superstructures. Int J Oral Maxillofac Implants. 2014;29 Suppl:117–36 Smith RB1, Tarnow DP. Classification of molar extraction sites for immediate dental implant placement: technical note. Int J Oral Maxillofac Implants. 2013 May-Jun;28(3):911-6. Gary Finelle DDS Dr Finelle graduated from Dental School in Paris (University Paris 7) in 2009. To complete his DDS degree, he defended his thesis about peri-implant soft tissue wound healing around dental implants. After two years of general dental practice in France, he joined the Advanced Implant Program at Harvard School of Dental Medicine, from which he graduated in May 2013. Throughout his program, he has been trained with the latest technology available during his clinical activity, as well as for research purpose. He is involved in researches and has published articles in international scientific journals related to digital impressions, computer guided implant surgery, and implant rehabilitations. The special research interests are the development/application of Digital Dental Technology from treatment planning, implant placement to restoration. The post Gary Finelle: Sealing Socket Abutment technique (SSA) – immediate implant placement in molar site (Straumann® Tissue Level Implant, botiss cerabone®, Variobase®) appeared first on STARGET COM.

Augmentation of hard tissue – an overview of regenerative techniques in dentistry

  Correcting a qualitative or quantitative reduction in the bone bed before implantation can greatly improve the implant outcome. In addition to the gold standard of autologous bone grafting, the bone substitute materials currently available for this purpose can be subdivided into allogenic, xenogenic and alloplastic materials. Developments in the field of synthetic BSMs are constantly changing, and the selection of appropriate materials depends on the indication, availability and the individual treatment plan. The common goal of these BSMs is to achieve stable, long-term anchorage of the implants in the bone. A knowledge of the advantages and limitations of their principal properties in respect of osteoconduction, osteoinduction and osteogenesis, and the adequate selection, based on this knowledge, can ensure high-quality, evidence-based treatment. Introduction As well as the need for physical and mechanical integrity and stability in terms of adequate moldability during application, early load-bearing and ideal porosity, the focus of current research efforts is on the development of optimal biomolecular parameters in the area of osteogenesis (bone formation in the graft by osteoblasts), osteoconduction (creation of a scaffold for vascularization of the adjacent bone) and osteoinduction (differentiation of multipotent mesenchymal cells into osteoblasts, by proteins bound in the graft). In an ideal scenario, these parameters interact to achieve successful osteointegration of the BSM during the course of healing. In this case, the direct bonding of the bone substitute material to adjacent healthy bone without the formation of a separating layer of connective tissue can create the best possible basis for successful long-term implant provision. The implant-related indications determined by the dentist for the use of bone substitute materials predominantly involve horizontal and vertical bone defects of the alveolar ridge. Autogenous bone substitute materials Autogenous bone is considered to be the gold standard for hard tissue augmentation techniques. Apart from the physiological interaction between the aforementioned physical and mechanical parameters and outstanding performance in terms of osteoinduction, osteoconduction and osteogenesis, the use of autologous bone avoids complications such as contrary cellular and humoral immune reactions and transmission of diseases. However, the use of these grafts is associated with certain limitations: These include the need for a second intervention site with additional risks such as inflammation, pain or sensory disorders at the site of harvesting. Depending on the harvesting site (retromolar, mandibular symphysis, iliac crest), specific advantages and disadvantages in respect of the differing biological significance and the possible reconstruction volume will need to be taken into account [1, 2]. Although autogenous bone is still considered to be the gold standard for long-term implant success, studies involving specific indications, such as lateral augmentation or the sinus lift, have shown that the use of bone substitute materials can achieve equivalent results. Moreover, the procedure of autogenous bone harvesting can significantly prolong operation time and the hospitalization rate in cases of bone harvesting of the iliac crest [3, 4]. Allogenic bone substitute materials In order to counter the donor morbidity associated with the use of autogenous grafts, the use of allogenic grafts can be considered. Allogenic describes the transfer of the graft between genetically dissimilar individuals. Since the grafts count as medicinal products authorized e.g. by the Paul Ehrlich Institute in Germany or local accredited tissue banks, their use is guaranteed to be safe both for the therapist and patient. However, the risk of infection resulting from the transfer of biological tissue from human to human, as well as the risks of fractures or pseudarthroses associated with an allogenic graft, cannot be ruled out completely [5]. Through stringend donor screening and recovery protocols, as well as a highly controlled processing environment, the risks of disease transmission are countered at every step. To date there are no known cases of transmission triggered by processed, freeze-dried bone preparations in dental applications. Two distinct approaches can basically be adopted for processing allogenic BSMs: The material is freed from a given mineralized bone substance by decalcification in order to optimize the osteoinduction potential of the remaining growth factors in the collagen. This approach of demineralized bone matrix (DBM, also known as demineralized freeze-dried bone allograft, DFDBA), can be contrasted with the processing of the mineralized components of the donor tissue (mineralized freeze-dried bone allograft, FDBA). In this approach the tissue is freed of potentially infectious or immunologically active constituents. This leaves the natural bone structure with the trabecular matrix, with preservation of both the organic phase (collagen) and the mineral phase. (Click on the image for a larger resolution) Cancellous Allograft Particles used as dental bone substitute. Cortical AlloGraft Particles used as dental bone substitute. Since the physical and mechanical properties are equivalent to those of autogenous graft, allogenic BSM is considered to be comparable with autologous bone in respect of its osteoconductivity potential. One bone substitute material of human origin that is available in many European countries is the product maxgraft® from botiss biomaterials GmbH. This processed allogenic bone substitute is available in different  standardized forms of granules, blocks, rings etc., or alternatively as an individually milled and shaped block graft, and can therefore be used for various indications. In case of large defects, a block-like matrix can be prepared from processed human donor bone, thus avoiding invasive harvesting of bone from the iliac crest or cranial areas. After organ donor selection and donor testing for infectious agents like HIV, HBV and HCV, the BSM undergoes chemical cleaning, preparation and sterilization. A solution tailored to the individual defect involves the use of a patient-specific bone block that is planned on the basis of imaging and then milled (maxgraft® bonebuilder, botiss biomaterials GmbH). As an individual allogenic graft solution, individual implants customized for the patient can be created by means of CBCT scanning in the CAD/CAM technique. These are constructed by botiss and then produced by the “Cells and Tissuebank Austria (CTBA)”. As a prefabricated ring structure (maxgraft® bonering), the allogenic graft supplied by the company botiss allows the bone augmentation and implantation to take place at the same time, avoiding the need for a second procedure. These grafts can be used in sinus floor augmentations or horizontal and vertical bone defects with simultaneous implant provision. The latest literature findings show results comparable with the use of demineralized allogenic BSM in sinus floor augmentations. The results of evidence-based studies also support the use of this type of BSM for alveolar ridge augmentations, intrabony defects and implant provision [6-9]. Xenogenic bone substitute materials In contrast with an allogenic BSM, xenogenic tissue is of animal or plant origin. In this context, BSMs of bovine origin are by far the most widely used materials. As with allogenic bone substitute materials, the matrix component is left in place during the processing of xenogenic grafts in order to control osteoconduction. The trabecular framework remains after thermal processing. Here, the osteoconductivity of the tissue as a scaffold for vessel formation and subsequent ingrowth of osteoblasts in the graft are particularly advantageous. As a result, biomolecular effective components are deactivated, leaving a matrix of hydroxyapatite ceramic. The lack of pathogen transmission due to this deactivation process is particularly beneficial. Additionaly, the immunological action can be considered to be low. Most of the commercially available products are designed to create a trabecular matrix for the formation of new bone. One example is cerabone® (botiss biomaterials GmbH), a material processed from bovine bone. Bone substitute materials obtained from equine bone or marine algae are also available. By far the most scientific evidence is available for the group of bovine xenogenic BSMs. Bovine bone material possesses physical and mechanical properties that are similar to those of human bone, thus comparable results can be achieved in terms of osteoconduction and vascularization. (Click on the image for a larger resolution) botiss® cerabone®: bovine dental bone substitute; surface structure of a single particle in high magnification botiss® cerabone®: bovine dental bone substitute; surface structure of a single particle in high magnification Product presentation botiss® cerabone® Cerabone® is prepared by a unique high-temperature process that reliably removes potential infectious agents while at the same time preserving the natural cancellous bone structure. Due to the remaining trabecular support structure a maintenance of the original bone substitute volume can be achieved. [10, 11]. The advantages of cerabone® include its high purity and volume maintenance, an interconnecting pore structure and minimization of the infection risk by its processing [12]. A feature common to all BSMs of bovine origin is the comparatively low remodeling potential during healing. As a result, the bone substitute material remains in situ as a slowly-resorbable osteoconductive scaffold. Alloplastic bone substitute materials Alloplastic bone substitute consists of synthetically produced materials. By imitating the trabecular bone matrix of human bone, the synthetic material possesses similar osteoconductive and osteointegrative capabilities. Depending on the starting material, the alloplastic materials can be subdivided as follows: ceramics (tricalcium phosphate, hydroxyapatite, bioglasses, glass ionomers), polymers (polymethyl methacrylate, polylactides/polyglycolides and other copolymers), cements (calcium phosphate cements) and metals (titanium). Durability and resorbability are particularly  important when selecting these materials. Ceramics Alloplastic hydroxyapatite ceramics [Ca10(PO4)6(OH)2] are the most common representatives of this group. The sintering of calcium phosphates (hydroxyapatit (HA), alpha-tricalcium phosphate (α-TCP) and beta-tricalcium phosphate (β-TCP)) produces a biocompatible, non-immunogenic and a slowly-resorbable matrix with osteoconductive and osteointegrative properties [13-16]. Since hydroxyapatite in crystalline form provides the basis for the hard substance of human bone, making up around 40 % of its content, ceramics of this type are likely candidates for use in bone replacement. Innovative sintering techniques can create the conditions that are favorable for osseointegration and biodegradation. Here, pore diameters of 150–600 μm are considered to be ideal for these purposes [14]. (Click on the image for a larger resolution) botiss® maxresorb®: synthetic dental bone substitute; surface structure of a single particle in high magnification. Product presentation botiss® maxresorb®. A fully synthetic commercially available representative of this group is maxresorb® (botiss biomaterials GmbH). Consisting of 60% hydroxyapatite (HA) and 40% beta-tricalcium phosphate (ß-TCP), maxresorb® possesses a uniform interconnecting pore structure thanks to the standardized manufacturing process. With pore sizes ranging from 200 to 800 μm and an overall porosity of ~80%, it provides a suitable scaffold for vascularization and cell migration [18]. Indications for the dentist in practice Returning to the initially mentioned indications for the use of bone substitute materials in implantology, the following recommendations can be made on the basis of the latest guideline on “Implantology-related indications for the use of bone substitute materials”: Dehiscence defect (intrabony defect): In most cases, the use of BSMs resulted in complete defect regeneration. Horizontal/vertical defects: The use of BSMs produced horizontal (3.6–5.6 mm) and vertical (2.0–5.6 mm) dimensional gains after 6 months with values of less than 5 % for augmentation and implant losses. Xenogenic BSMs were superior to allogenic grafts in respect of the newly-formed bone. Sinus floor elevation: Xenogenic BSMs (95.6 %) and allogenic BSMs (93.3 %) were superior to alloplastic materials (81 %). External sinus floor elevation: The use of BSMs resulted in a cumulative implant survival rate of almost 97 %. Autologous bone is inferior to particulate grafts. Internal sinus floor elevation: The use of BSMs resulted in implant survival rates of 94.8-100 %. No general recommendation was issued for the use of BSMs in this context. It can therefore be assumed that the use of alloplastic bone substitute materials can achieve very good results particularly in the management of alveolar dehiscence defects (up to a height of 8mm) and also in sinus floor elevations. Augmentations with purely allogenic grafts in the whole vertical-horizontal situation and for fairly large defects should be handled more critically. Current recommendations point to the benefits of additive supplementation with allogenic BSMs in procedures with autologous bone substitute materials. Extensive defects should generally be reconstructed with large-pore BSMs, ideally with pore diameters in the range of 150 to 600 μm, in order to facilitate better neovascularization, cell permeation and osteoconduction. Summary Depending on the individual indication, the dentist can currently choose from a wide range of evidence-based bone substitute materials. Both natural and allogenic BSMs can basically be used, either on their own or in addition to endogenous bone, for the reconstruction of jaw defects. To this end, the advantages and disadvantages and possible contraindications of the respective material groups will need to be assessed and used on a case-by-case basis. Before planning the treatment, the dentist must conduct an individual, patient-oriented evaluation of the osteogenic efficiency and relative risks for the patient arising from the use of allogenic or xenogenic bone substitute materials. Given the complexity and diversity of the subject of “bone substitute materials”, careful and comprehensive briefing of the patient is extremely important before any augmentation measure, regardless of the material that is ultimately used. Relative and, where applicable, absolute contraindications to the use of alloplastic materials are an immunocompromised patient (immune deficiency, interleukin-1 polymorphisms), generally poor oral hygiene (dental status not worth preserving, severe chronic periodontitis), treatment with drugs that inhibit bone resorption (bisphosphonates) and previous oral-maxillofacial radiotherapy. Finally, it should be stressed that the correct technique is of crucial importance when using the respective bone substitute material. Apart from the choice of suitable bone substitute material, key factors for long-term success of the implant are the membrane application, the appropriate incisions and the soft tissue management.   References Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, and M. Glogauer, “Biodegradable Materials for Bone Repair and Tissue Engineering Applications,” Materials 8(9), 5273 (2015). D. E. Tolman, “Reconstructive procedures with endosseous implants in grafted bone: a review of the literature,” Int J Oral Maxillofac Implants 10(3), 275-294 (1995). E. Nkenke and F. Stelzle, “Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review,” Clin Oral Implants Res 20 Suppl 4(124-133 (2009). M. Peleg, A. K. Garg, C. M. Misch, and Z. Mazor, “Maxillary sinus and ridge augmentations using a surface-derived autogenous bone graft,” J Oral Maxillofac Surg 62(12), 1535-1544 (2004). K. U. Gomes, J. L. Carlini, C. Biron, A. Rapoport, and R. A. Dedivitis, “Use of allogeneic bone graft in maxillary reconstruction for installation of dental implants,” J Oral Maxillofac Surg 66(11), 2335-2338 (2008). G. Chaushu, O. Mardinger, S. Calderon, O. Moses, and J. Nissan, “The use of cancellous block allograft for sinus floor augmentation with simultaneous implant placement in the posterior atrophic maxilla,” J Periodontol 80(3), 422-428 (2009). G. Chaushu, M. Vered, O. Mardinger, and J. Nissan, “Histomorphometric analysis after maxillary sinus floor augmentation using cancellous bone-block allograft,” J Periodontol 81(8), 1147-1152 (2010). A. Acocella, R. Bertolai, E. Ellis, 3rd, J. Nissan, and R. Sacco, “Maxillary alveolar ridge reconstruction with monocortical fresh-frozen bone blocks: a clinical, histological and histomorphometric study,” J Craniomaxillofac Surg 40(6), 525-533 (2012). R. A. Wood and B. L. Mealey, “Histologic comparison of healing after tooth extraction with ridge preservation using mineralized versus demineralized freeze-dried bone allograft,” J Periodontol 83(3), 329-336 (2012). F. Riachi, N. Naaman, C. Tabarani, N. Aboelsaad, M. N. Aboushelib, A. Berberi, and Z. Salameh, “Influence of material properties on rate of resorption of two bone graft materials after sinus lift using radiographic assessment,” Int J Dent 2012(737262 (2012). D. Panagiotou, E. Ozkan Karaca, S. Dirikan Ipci, G. Cakar, V. Olgac, and S. Yilmaz, “Comparison of two different xenografts in bilateral sinus augmentation: radiographic and histologic findings,” Quintessence Int 46(7), 611-619 (2015). D. Tadic and M. Epple, “A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone,” Biomaterials 25(6), 987-994 (2004). M. Bohner, “Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements,” Injury 31 Suppl 4(37-47 (2000). H. Schliephake, N. Zghoul, V. Jager, M. van Griensven, J. Zeichen, M. Gelinsky, and T. Wulfing, “Effect of seeding technique and scaffold material on bone formation in tissue-engineered constructs,” J Biomed Mater Res A 90(2), 429-437 (2009). S. Takagi, L. C. Chow, M. Markovic, C. D. Friedman, and P. D. Costantino, “Morphological and phase characterizations of retrieved calcium phosphate cement implants,” J Biomed Mater Res 58(1), 36-41 (2001). R. Smeets, A. Kolk, M. Gerressen, O. Driemel, O. Maciejewski, B. Hermanns-Sachweh, D. Riediger, and J. M. Stein, “A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation,” Head Face Med 5(13 (2009). M. Hallman and T. Nordin, “Sinus floor augmentation with bovine hydroxyapatite mixed with fibrin glue and later placement of nonsubmerged implants: a retrospective study in 50 patients,” Int J Oral Maxillofac Implants 19(2), 222-227 (2004). K. Zurlinden, M. Laub, D. S. Dohle, and H. P. Jennissen, “Immobilization and Controlled Release of Vascular (VEGF) and Bone Growth Factors (BMP-2) on Bone Replacement Materials,” in Biomedical Engineering / Biomedizinische Technik, (2012), p. 989. Prof. Ralf Smeets Dr. med. Dr. med. dent Executive Senior Physician and Head of Research, University Medical Center Hamburg-Eppendorf, Head and Neurocenter of the Clinic and Outpatients for Oral and Maxillofacial Surgery, Hamburg, Germany Studied chemistry (specialist subject: macromolecular chemistry) and human medicine and dentistry at RWTH Aachen University. Surgeon specialized in oral and maxillofacial surgery. Dentist specialized in oral surgery Hans-von-Seemen Prize awarded by the German Association for Plastic and Restorative Surgery. Since 2011, Executive Senior Physician and Head of Research in the Clinic and Outpatients for Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf. 2011 W2 University Professor of Maxillofacial and Oral Surgery in the Medical Faculty of Hamburg University. The post Augmentation of hard tissue – an overview of regenerative techniques in dentistry appeared first on STARGET COM.


Worldwide locations

Swiss Exchange (SIX)

STMN CHF 398.50 -2.00 (-0.50%) 23.01.2017 13:14

Share monitor

Annual Report 2015