CLINICAL LITERATURE
FOR THERAPEUTIC INDICATIONS
TABLE OF CONTENTS

1 Basic principles of periodontal regeneration with Enamel Matrix Proteins
 1.1 Review
 1.2 Original papers
 2 Straumann® Emdogain in intrabony defects
 2.1 Reviews
 2.2 Clinical studies
 2.3 Case studies
 2.4 Straumann® Emdogain and guided tissue regeneration (GTR)
2 Straumann® Emdogain in furcation defects
 3 Straumann® Emdogain in furcation defects
 3.1 Clinical studies and case series with furcation defects
4 Straumann® Emdogain in recession defects
 4.1 Reviews
 4.2 Clinical studies and case reports with recession defects
5 Straumann® Emdogain with bone graft material
The principle aim of periodontal reconstructive therapy is to save teeth. This is best achieved through regeneration of full functional attachment.

Enamel matrix proteins are responsible for the development of cementum and periodontal ligament in the crescent phase of the tooth. Applied to the cleaned root surface of the periodontally diseased tooth, the periodontium, which includes the cementum, periodontal ligament and alveolar bone, is regenerated by mimicking the biological processes of natural tooth development.

1 BASIC PRINCIPLES OF PERIODONTAL REGENERATION WITH ENAMEL MATRIX PROTEINS

Straumann® Emdogain distributes evenly and precipitates on the root surface to form an extracellular matrix.

Straumann® Emdogain stimulates the attraction and proliferation of mesenchymal cells from the healthy part of the periodontium.

Natural and specific cytokines and autocrine substances are secreted, promoting the necessary proliferation.

Straumann® Emdogain consists of a mixture of enamel matrix proteins and their derivatives (EMD), and propylene-glycolic-alginate (PGA) as carrier. The most prevalent protein, amelogenin and its derivatives may also be the most important factor in the regenerative activity of EMD.
Attraction and differentiation to cementoblasts which start with the formation of the cement matrix in which the periodontal fibers will be fixed.

The newly formed cement layer increases in thickness. The periodontal ligament fibers anchor on the root surface.

Within months, the defect fills with newly formed periodontal tissue.

When Straumann® Emdogain is applied, EMD proteins precipitate from the PGA carrier and EMD form an extracellular like matrix on the root surface. This matrix influences cell attachment and proliferation, mediates the formation of cementum on the root and the expression of molecules involved in the regulation of bone remodeling, providing a foundation for all necessary tissues associated with a true functional attachment.
1.1 Review

1.2 Original papers

2 STRAUMANN® EMDOGAIN IN INTRABONY DEFECTS

The ultimate goal of periodontal treatment is the preservation of teeth. While open flap debridement (OFD) does repair the periodontal defect, leading to an improved survival rate, the additional use of Straumann® Emdogain regenerates periodontal tissue and significantly improves the clinical outcome. The clinical benefit of this procedure lies in the resulting long-term stability of the regenerated periodontal tissue, which has been studied up to 10 years, as well as the immediate reduction of patients’ postoperative discomfort. In a consensus report by the European Academy of Periodontology (EAP), Straumann® Emdogain was the only biologically active agent with solid evidence for its use in intra-bony defects either alone or in combination with bone grafts. The clinical parameters significantly improved through the use of Straumann® Emdogain compared to OFD alone are: probing pocket depths (PPD) reduction, clinical attachment level (CAL), bleeding on probing (BP), and the bone fill measured by radiographic bone density or at re-entry. The enhanced bone fill could also be observed in supra-alveolar type defects. Moreover, an improvement in the patient’s chewing ability was observed. The probability of achieving clinically significant improved results could be shown to double through Straumann® Emdogain.

Numerous case reports including histological evidence support these findings. Clinical factors like defect angle, smoking habit, oral hygiene and age do influence the outcome. Straumann® Emdogain is easy to use and safe. It has the flexibility, in single or multiple applications in conjunction with periodontal surgery, to manage areas that are difficult to treat.

2.1 Reviews

2.2 Clinical studies

2.3 Case studies

2.4 Straumann® Emdogain and guided tissue regeneration (GTR)
Direct comparisons between GTR and Straumann® Emdogain in intrabony defects show that treatment with Straumann® Emdogain results in a much lower rate of complications and patient morbidity. The clinical results with Straumann® Emdogain were at least equivalent or better. Long-term stability of the clinical benefit in direct comparison to GTR has been followed up for a maximum of 10 years. Additional use of a membrane in the regenerative treatment with Straumann® Emdogain does not improve the outcome, but rather increases a patient’s postoperative discomfort.

Clinical studies and case series

3 STRAUMANN® EMDOGAIN IN FURCATION DEFECTS

In the surgical treatment of Class II furcation, the use of Straumann® Emdogain leads to a significant regeneration of the furcation lesions. Results from randomized clinical trials comparing Straumann® Emdogain and a resorbable membrane in the treatment of Class II furcations have demonstrated a significant reduction in horizontal furcation depth. Clinically, Straumann® Emdogain treatment reduced 78% of the defects, 18% of which completely. Furcation reduction in membrane treatment could be observed only in 67% of the defects, 7% of which completely. A lower incidence of postoperative complications following Straumann® Emdogain compared to GTR treatment was obvious. At 1-week post-operative 62% of the patients treated with Straumann® Emdogain had no pain compared to only 12% treated with GTR. Moreover, 44% showed no swelling compared to 6% for the GTR control group, respectively. Also, in patients with limiting factors like age and poor oral hygiene, the treatment of Class II furcation defects with Straumann® Emdogain was found to be superior compared to GTR.

3.1 Clinical studies and case series with furcation defects

4 STRAUMANN® EMDOGAIN IN RECESSION DEFECTS

Treatment of exposed root surfaces is becoming an increasingly important therapeutic issue. A driving force behind this development is the patient’s increasing esthetic demands.

For the patient and the clinician, long-term stability of the defect coverage is a stringent criterion for success. Straumann® Emdogain has successfully been used to enhance the clinical parameters of the coronally-advanced flap technique (CAF)\(^\text{110}\). On formally exposed root surfaces treated with the CAF, the addition of Straumann® Emdogain leads to significantly improved clinical parameters including root coverage \(^{97, 98, 100, 106-108} \), tissue quality and tissue quantity (e.g. keratinized tissue \(^{97, 99, 100, 103, 106-108, 114}\)) and long term stability \(^{104}\) after recession coverage procedures.

Compared to the CAF with a connective tissue graft (CTG), CAF and Straumann® Emdogain treatment has shown in 89.5 % of the cases 100 % root coverage compared to 79 %, respectively \(^{110}\). The 2008 consensus report of the EAP concluded that only Straumann® Emdogain or CTG can significantly improve the clinical outcome of a CAF in Miller Class 1&2 single gingival recessions \(^{96}\). The combined technique of CAF with Straumann® Emdogain exhibits fewer complications and is less painful for the patient \(^{108, 110}\) in that it avoids a second iatrogenic wound. Histological evidence of periodontal regeneration including new cementum, newly formed bone and connective tissue fibers could also been shown \(^{111, 115}\) for the combined therapy of CAF and Straumann® Emdogain.

4.1 Reviews

4.2 Clinical studies and case reports with recession defects

In the treatment of wide intrabony defects, mechanical support of soft tissue is occasionally considered. Clinicians have reported successful use of Straumann® Emdogain in combination with various bone graft substitutes such as Straumann® BoneCeramic 117 offering structural support for the soft tissue in the treatment of wide intrabony defects 117-142 and furcation defects 91. Safety and effectiveness of the combination have also been confirmed in a systematic review 17. Straumann® Emdogain PLUS combines the regenerative properties of Straumann® Emdogain with the structural support of the osteoconductive Straumann® BoneCeramic.

