Turn time spent milling into time spent smiling.
n!ce® processing – polish only

1. MILL
2. POLISH
3. SEAT

Prepare the tooth, digitize and design the desired restoration as usual.

Mill the restoration with the n!ce® dedicated program1 of your CADCAM system.

Smooth out the attachment point with standard grinding tools for lithium-disilicate glass-ceramic2.

Try-in the restoration, check and adjust the contact points if required.

Simply polish with a standard polishing set for lithium-disilicate glass-ceramic (or use a polishing paste with a brush wheel) to achieve a natural high gloss finish3.

Condition the n!ce® restoration (etch the bonding surface with 5% hydrofluoric acid gel for 20 second, and silanize the bonding surface).

Clean the n!ce® restoration in a ultrasonic water bath or with a steam jet.

Clean and condition the prepared tooth and simply seat the n!ce® milled restoration with adhesive cement system for lithium-disilicate glass-ceramic.

Note:
- Observe the n!ce® minimum thicknesses guidelines
- Do not sandblast the restoration with Al₂O₃ or glass polishing beads

straumann
n!ce® processing – stain & glaze

1. MILL

Prepare the tooth, digitize and design the desired restoration as usual.

Mill the restoration with the n!ce® dedicated program of your CADCAM system.

Smooth out the attachment point with standard grinding tools for lithium-disilicate glass-ceramic.

Try-in the restoration, check and adjust the contact points if required.

2. STAIN & GLAZE

Clean the n!ce® restoration in an ultrasonic water bath or with a steam jet.

Apply individual stains followed by glaze. Apply n!ce® 3D transpa paste to create precise contact points or small corrections (previously, wet the surface of the crown with a very thin layer of n!ce® glaze paste). Place the n!ce® restoration on plain firing pad with firing tray or on firing pad with a platinum foil.

Conduct the firing as recommended (see heating profile).

3. SEAT

Condition the n!ce® restoration (etch the bonding surface with 5% hydrofluoric acid gel for 20 second; and silanize the bonding surface).

Clean and condition the prepared tooth and simply seat the n!ce® milled restoration with adhesive cement system for lithium-disilicate glass-ceramic.

Note:
- Observe the n!ce® minimum thicknesses guidelines
- Do not sandblast the restoration with Al₂O₃ or glass polishing beads
n!ce® restoration

n!ce® tooth preparation guidelines

- The preparation must not have angles or sharp edges.
- The shoulder preparation must have rounded inner edges and/or chamfer.
- The static and dynamic antagonist contacts should be taken into consideration and the preparation margin should not be located on the centric antagonist contacts.

n!ce® is indicated for single tooth restoration and is intended to restore natural teeth or to be placed on top of abutments.

n!ce® minimum restoration thickness guidelines

- Inlay: ≥ 1.0 mm
- Onlay: ≥ 1.0 mm
- Veneer: ≥ 0.6 mm
- Partial Crown: ≥ 1.0 mm
- Crown: ≥ 1.0 mm
n!ce® heating profile

After stain & glaze or add-on

n!ce® can be stained and glazed if a more pronounced characterization is wished.

Please ensure the following:

- Only use stain and glaze material compatible with a CTE value of $7.1 \times 10^{-6} \text{ K}^{-1}$.
- We recommend the n!ce® glaze and dedicated pastes. Only n!ce® 3D transpa paste can be used for adding-on.
- Apply only a very thin layer of the glaze on the whole restoration with a clean and dry brush. If more pronounced characterizations are required, stains can be applied.
- If relevant, apply n!ce® 3D transpa paste to create precise contact points or make small corrections.

Please use the following heating profile (vacuum is not required):

<table>
<thead>
<tr>
<th>Base Temperature</th>
<th>Preheating time</th>
<th>Drying time</th>
<th>Heating rate</th>
<th>Vacuum start</th>
<th>Vacuum start</th>
<th>Final temperature</th>
<th>Holding time</th>
<th>Cooling temperature</th>
<th>Cooling rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glaze paste</td>
<td>450</td>
<td>5</td>
<td>5</td>
<td>55</td>
<td>450</td>
<td>790</td>
<td>1 (without vacuum)</td>
<td>400</td>
<td>25</td>
</tr>
<tr>
<td>n!ce® paste</td>
<td>450</td>
<td>5/6*</td>
<td>5/6*</td>
<td>55</td>
<td>450</td>
<td>790</td>
<td>1 (without vacuum)</td>
<td>400</td>
<td>25</td>
</tr>
<tr>
<td>n!ce® 3D transpa paste</td>
<td>450</td>
<td>5/6*</td>
<td>5/6*</td>
<td>55</td>
<td>450</td>
<td>790</td>
<td>1 (without vacuum)</td>
<td>400</td>
<td>25</td>
</tr>
</tbody>
</table>

* Increase the drying time depending on the thickness

- The firing temperature must not exceed 820°C.
- Utilizing a slow cooling rate is important to avoid deviations in the translucency.

n!ce® sterilization parameters

n!ce® restorations, especially crowns used in combination with Ti-Bases, can be sterilized under following parameters:

<table>
<thead>
<tr>
<th>Method</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoclave, moist heat</td>
<td>134 °C (273 °F), for 3 minutes</td>
</tr>
<tr>
<td>Fractionated vacuum</td>
<td></td>
</tr>
</tbody>
</table>

Turn time spent milling into time spent smiling ;-)
REFERENCES

1 n!ce® can also be milled with the lithium-disilicate milling program
2 Ideally use water-cooled instruments, grind only at low speed and slight pressure to prevent delamination and chipping at the edges
3 For polishing the occlusal surfaces, use preferably diamond polishing tools for lithium-disilicate glass-ceramic
4 Crowns can also be seated using self-adhesive cement
5 Alternatively, use a firing pin, we recommend the use of platinum pins.