Straumann® Mini Implant System

Basic Information
About this guide

This surgical and prosthetic procedure describes the steps required for implantation and restoration of the Straumann® Mini Implant System. The Straumann® Mini Implant System is recommended for use only by clinicians with advanced surgical skills. It is assumed that the user is familiar with placing dental implants. Not all detailed information will be found in this guide. Reference to existing Straumann® procedure manuals will be made throughout this document.

Not all products shown are available in all markets.
Contents

1. The Straumann® Mini Implant System 3
 1.1 Portfolio overview 4
 1.2 The Straumann® Mini Implant at a glance 5
 1.3 Straumann® Optiloc® Retentive System 6

2. Surgical Procedure 7
 2.1 Preoperative planning 7
 2.2 Surgical consideration 9
 2.3 Instruments 10
 2.4 Implant bed preparation 14
 2.5 Implant insertion 15

3. Prosthetic Procedure 19
 3.1 Chairside modification of an existing well-fitting and well-functioning denture into an overdenture supported by Optiloc® Retentive System/Straumann® Mini Implants 19
 3.2 Creating a new overdenture with the Optiloc® Retentive System 22
 3.3 Soft reline protocol 25

4. Using the Optiloc® Tools 26
 4.1 Optiloc® Matrix Housing Extraction Instrument 26
 4.2 Optiloc® Laboratory Instrument (blue) 26
 4.3 Optiloc® Retention Insert Instrument 27

5. Specially Featured Optiloc® Components 28

6. Product Reference List 29
 6.1 Straumann® Mini Implants Roxolid® SLA® 29
 6.2 Optiloc® Processing Package, Retention Inserts and Matrix Housings 29
 6.3 Optiloc® tools and auxiliary parts 30
 6.4 Straumann® Modular Cassette 31

7. Further Information 32
1. The Straumann® Mini Implant System

The Straumann® Mini Implant System offers one-piece Tissue Level implants with an Optiloc® prosthetic connection. These are designed for narrow edentulous ridges and immediate treatment procedures (if at least 35 Ncm insertion torque is achieved in all implants) to stabilize full removable overdentures.

The Straumann® Mini Implants are made from the material Roxolid® with the SLA® surface and are available in the end-osteal diameters Ø 2.4 mm, with length options of 10 mm, 12 mm and 14 mm.

To obtain more information about indications and contraindications related to the implant, please refer to the corresponding instructions for use. Instructions for use can be found on www.ifu.straumann.com

For further information on the Optiloc® Retentive System please refer to www.ifu.valoc.ch
1.1 Portfolio overview

Surgical components

<table>
<thead>
<tr>
<th>Straumann® Mini Implant GH 2.8 mm:</th>
<th>Needle Drill, long</th>
<th>Pilot Drill</th>
<th>Optiloc® Adapter for Ratchet</th>
<th>Optiloc® Adapter for Handpiece</th>
<th>Paralleling Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>042.944S, 10 mm</td>
<td>042.945S, 12 mm</td>
<td>042.946S, 14 mm</td>
<td>GH 3.8 mm:</td>
<td>042.950S, 10 mm</td>
<td>042.951S, 12 mm</td>
</tr>
<tr>
<td>042.952S, 10 mm</td>
<td>042.953S, 12 mm</td>
<td>042.954S, 14 mm</td>
<td>GH 4.8 mm:</td>
<td>042.955S, 10 mm</td>
<td>042.956S, 12 mm</td>
</tr>
</tbody>
</table>

Prosthetic components

<table>
<thead>
<tr>
<th>Optiloc® Model Analog</th>
<th>Matrix Housings</th>
<th>Retention Insert</th>
<th>Optiloc® Block Out Spacer</th>
<th>Optiloc® Processing Collar</th>
</tr>
</thead>
<tbody>
<tr>
<td>2102.0024-STM/2102.0024-OPT*</td>
<td>2102.0001-STM/2102.0001-OPT*</td>
<td>2102.0003-STM/2102.0003-OPT*</td>
<td>2102.0004-STM/2102.0004-OPT*</td>
<td>2102.0005-STM/2102.0005-OPT*</td>
</tr>
<tr>
<td>2102.0009-STM/2102.0009-OPT*</td>
<td>2102.0010-STM/2102.0010-OPT*</td>
<td>2102.0002-STM/2102.0002-OPT*</td>
<td>2102.0006-STM/2102.0006-OPT*</td>
<td>2102.0007-STM/2102.0007-OPT*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optiloc® Impression Coping</th>
<th>Optiloc® Matrix Housing Extraction Instrument</th>
<th>Optiloc® Laboratory Instrument</th>
<th>Optiloc® Retention Insert Instrument</th>
<th>Equipment Box with 3 Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2102.0012-STM/2102.0012-OPT*</td>
<td>3202.0003-STM/3202.0003-OPT*</td>
<td>3202.0002-STM/3202.0002-OPT*</td>
<td>3202.0001-STM/3202.0001-OPT*</td>
<td>5102.0000-STM/5102.0000-OPT*</td>
</tr>
<tr>
<td>3202.0003-STM/3202.0003-OPT*</td>
<td>3202.0002-STM/3202.0002-OPT*</td>
<td>3202.0001-STM/3202.0001-OPT*</td>
<td>3202.0000-STM/3202.0000-OPT*</td>
<td>3202.0000-STM/3202.0000-OPT*</td>
</tr>
</tbody>
</table>

*These articles are only available in Turkey.
1.2 The Straumann® Mini Implant at a glance

Roxolid®:
• High material strength and biocompatibility
• Peace of mind with Straumann® Mini Implants

SLA®:
• Predictability in osseointegration
• Scientific evidence
• Low prevalence of peri-implantitis
• Bone preservation

Roxolid® shows a 20% higher tensile strength than Straumann® cold worked titanium and a 80% higher strength than standard titanium Grade 4.

1.2.1 Material
Roxolid® is a groundbreaking material specifically designed for the use in dental implantology. The titanium-zirconium alloy is stronger than pure titanium¹,² and has excellent osseointegration properties³-⁵. This combination of properties is unique in the market, there is no other metallic alloy which unifies high mechanical strength and osteoconductivity.

Thanks to their outstanding biological and mechanical properties, Roxolid® Implants offer more treatment options than conventional titanium implants.

1 Amorphous Diamond-Like Carbon
1.3 Straumann® Optiloc® Retentive System

The Straumann® Optiloc® Retentive System for full removable overdentures offers an innovative carbon-based prosthetic connection coating (ADLC) with an excellent wear resistance, overcoming up to 40° implant convergence or divergence. Together with its durable PEEK matrices the Optiloc® Retentive System provides a unique and long-lasting attachment performance.

1.3.1 Straumann® Optiloc® Retentive System at a glance

- PEEK² Matrix Housings offering excellent chemical and physical properties
- Matrix accommodates up to 40° prosthetic divergence between two abutments
- 6 retention strengths offer optimal adjustment of the denture retention
- Matrix Housing available in titanium, or color-neutral PEEK² for a more aesthetic outcome

- Carbon-based abutment coating (ADLC³) offering a smooth surface and ultimate hardness for excellent wear resistance

The Optiloc® Matrix System allows a convergence, or divergence, of up to 20 degrees of each implant in relation to the denture’s path of insertion. This means that divergences between two implants of a maximum of 40 degrees can be corrected.

¹ Amorphous Diamond-Like Carbon
² Polyether ether ketone
2. Surgical Procedure

The workflow for the surgical procedure for the Straumann® Mini Implant System involves 3 steps:

- Preoperative planning
- Implant bed preparation
- Implant insertion

2.1 Preoperative planning

After patient selection and evaluation protocols have been completed, the number of Straumann® Mini Implants that should be placed (minimum of four in the mandible, minimum of six in the maxilla) are determined and thoroughly discussed with the patient. Information on bone availability for the implant bed of the patient and information of tissue depth mucosa thickness in the region of the prospected implant site by measuring with a perio probe should be available. After site selection, Straumann® Mini Implants should be placed at least 5 mm apart.

When anatomic conditions allow, distribute the number of implants along the arch in-order to minimize cantilever and to provide optimal load distribution/better load conditions. When the anatomic situation is not optimal for the mandible the implants should be placed beginning at least 5 mm anterior to the mental foramen. The remaining anterior space should be distributed equally between implants and respecting the minimum distance between implants (5 mm).

For maxillary placement, careful implant length selection must be followed to avoid anatomical structures such as nasal cavity and maxillary sinus.
2.1.1 X-ray reference foil

The vertical bone availability determines the maximum allowable length of the implant that can be placed. For easier determination of the vertical bone availability, we recommend the use of an x-ray reference foil with X-ray Reference Sphere (Art. No. 049.076V4).

Similar to the distortions that occur in X-rays, the implant dimensions are shown on the individual templates with the corresponding distortion factors ([1:1 to 1.7:1]). Determining each magnification factor or scale is facilitated by showing the X-ray reference sphere on the template (next to the scale reference).

Note: Use only the x-ray template specific to the implant type.

To calculate the effective bone availability, use the following formula:

\[
\frac{\text{X-ray Reference sphere 5 mm} \times \text{bone availability (X-ray*)}}{\text{Reference sphere diameter on the X-ray}} = \text{effective bone availability}
\]
2.2 Surgical consideration

<table>
<thead>
<tr>
<th>Bone Type</th>
<th>Soft tissue depth</th>
<th>Buccolingual width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 2 mm</td>
<td>≥ 2 mm</td>
</tr>
<tr>
<td>Type I</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Type II</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Type III</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>Type IV</td>
<td>✓</td>
<td>x</td>
</tr>
</tbody>
</table>

| 2.4 mm Straumann® Mini Implant | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

- **Not recommended**
- **Recommended**

* Taking into consideration all implant-related anatomic structures (e.g. mandibular canal, sinus maxillaris, etc.)

** Flapless procedures have a higher planning inaccuracy. We recommend at least a ridge width of 5.4 mm for such interventions

This implant is contraindicated for bone type IV. Additionally it is recommend that the treatment should only be conducted with patients that have more than 2 mm soft tissue depth and a buccolingual width of more than 4.4 mm. The procedure can be done flapless only if there is more than 5.4 mm buccolingual bone width.
2.3 Instruments

2.3.1 Drills
The Straumann® instruments have depth marks at 2 mm intervals that correspond to the available implant lengths. The first bold mark on the drills represents 10 mm and 12 mm, where the lower edge of the mark corresponds to 10 mm and the upper edge to 12 mm. The drills are delivered sterile.

1. Drill: 0270007S
2. Drill: 0270011S
3. Implant: 042.944S
2.3.2 Paralleling Post

The Paralleling Post is an instrument used to ensure the correct, parallel positioning of the implant during implant bed preparation and to align with other implants.

The mid portion of the Paralleling Post represents the gingiva height/machined part of the implant.

Characteristics
- Ø 1.6 mm
- Ø 2.2 mm
- Height 2.8 mm (gingiva height implant)
- Material: TAV
- Delivered sterile

2.3.3 Adapter

Specific adapter to use for insertion of the Straumann® Mini Implants.

Optiloc® Adapter for Ratchet
Optiloc® Adapter for Handpiece

Straumann® Mini Implant Ø 2.4 mm
2.3.4 Ratchet and Torque Control Device
The Ratchet is a two-part lever arm instrument with a rotary knob for changing the direction of force. It is supplied with a service instrument, which is used to tighten and loosen the head screw. The Holding Key (046.064) can be used to stabilize the Ratchet.

<table>
<thead>
<tr>
<th>Ratchet and Torque Control Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding Key</td>
</tr>
<tr>
<td>[Image of Holding Key]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intended use</th>
<th>Auxiliary</th>
<th>Torque transmission</th>
<th>Surgical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque markings</td>
<td>NA</td>
<td>NA</td>
<td>0/35/50/80 Ncm</td>
</tr>
<tr>
<td>Article Number</td>
<td>046.064</td>
<td>046.119</td>
<td>066.1100</td>
</tr>
<tr>
<td>Material</td>
<td>Stainless steel</td>
<td>Stainless steel</td>
<td>Stainless steel, DLC coated</td>
</tr>
</tbody>
</table>

Note: To ensure prolonged perfect function, the Ratchet must always be taken apart and the individual parts disinfected, cleaned and sterilized after use. Its function must be checked in good time before each use.

2.3.5 Straumann® Modular Cassette
The Straumann® Modular Cassette is used for the sterilization and the secure storage of the surgical instruments and auxiliary instruments. For guidelines on how to clean and sterilize the cassette, please refer to *Straumann® Modular Cassette, Basic Information* (702527/en).
2.3.6 Setup for Straumann® Mini Implant freehand surgery
For more information refer to Straumann® Modular Cassette Selection Guide (702824/en).

A Module
041.761

Caution: these instruments are for single use only and can not be sterilize with the Modular Cassette and other instruments.
2.4 Implant bed preparation

2.4.1 Drilling protocol for Straumann® Mini Implants

Recommended steps
- Dense cortex only

Bone type I
- Use the 1.6 mm Needle Drill according to the full implant length
- Evaluate Three-Dimensional position of the osteotomy with the use of the 1.6 mm side of the parallel post
- Use the 2.2 mm Pilot Drill until 6 mm
- Evaluate Three-Dimensional position of the osteotomy with the use of the 2.2 mm side of the parallel post
- Implant placement

Bone type II
- Use the 1.6 mm Needle Drill according to the full implant length
- Evaluate Three-Dimensional position of the osteotomy with the use of the 1.6 mm side of the parallel post
- 2.2 mm Pilot Drill only for the dense cortex

Bone type III
- Only use the 1.6 mm Needle Drill only until 4 mm
- Implant placement
2.5 Implant insertion

When anatomy is not favorable, with posterior height limitations.

A minimum of four Straumann® Mini Implants should be placed in the mandible.

Caution: Pay attention to the Inferior Alveolar Nerve, and the sublingual artery.

Note: Always start with the most distal implant at least 5 mm anterior to the mental foramen.

Step 1 – Gingival height assessment

With the use of a periodontal probe assess the thickness of the gingiva.

Note: consider the gingival height when drilling and reading the depth mark from the instruments.

Step 2 – Site preparation (flapless)

Mark the implantation site determined during the implant position planning with the ∅1.6 mm Needle Drill.

For flapless workflows:

In presence of a thin ridge, the use of a round bur may be necessary and shall be used in order to mark the bone before using the 1.6 mm Drill.

Step 3 – Implant axis

Mark the implant axis with the Needle Drill to a depth of 4 mm.

For ∅2.4 mm Straumann® Mini Implants in soft bone (type III), the implant bed preparation ends here.
Step 4 — In very hard bone (type I): Drill the implant bed to the depth of the corresponding selected implant with the 2.2 mm BLT Pilot Drill.

For Ø 2.4 mm Straumann® Mini Implants in medium bone (type II), the implant bed preparation ends here. In case of a hard cortex the drilling can be continued with the 2.2 mm Pilot Drill until the depth of 6 mm.

Note: In case of vertically reduced bone availability, an x-ray should be taken at this step in order to be sure that drill does not pass through the mandibular basal bone.

Insert the Ø 1.6 mm Paralleling Post to check for correct implant axis orientation.

Drill the implant bed to the final depth with the 1.6 mm Needle Drill, while correcting unsatisfactory implant axis orientation if necessary. Use the 1.6 mm side of the Paralleling Post to check the implant axis.

Insert the Ø 2.2 mm Paralleling Post to check for correct implant axis orientation.
Further implants, implant alignment:

Leave the parallel post as reference for the next implant bed preparation, and continue until all sites are prepared. Distribute the implants equally, respecting the minimum distance between implants (5 mm).

Note: Parallelism of the implants is essential.

Step 5 – Implant placement

Straumann® Mini Implants are delivered in a sterile vial and mounted on the vial cap which serves as initial insertion tool.

Use of the vial cap as finger driver

Insertion of implant begins with the vial cap until more torque is necessary.

Caution: Please do not use implant if it is detached from the vial cap after opening of the blister.
Step 6 – Final implant positioning

Place implant

Straumann® Mini Implants can be placed with the Handpiece or manually with the Ratchet. A maximum speed of 15 rpm is recommended.

Use the Ratchet and/or Handpiece to move the implant into its final position turning it clockwise.

Final placement is achieved once the entire conditioned SLA® surface is engaged into the bone.

Note: For immediate loading a minimum insertion torque of 35 Ncm is necessary for all implants. If 35 Ncm is not achieved on all implants conventional loading is recommended. Early loading (between 4 and 8 weeks after implantation) is contraindicated in all cases. For further information please go to prosthetic workflow.

Do not exceed 80 Ncm insertion torque during implant placement as this may lead to implant damage.

Note: A minimum of 4 Straumann® Mini Implants should be placed to stabilize a full mandibular denture and a minimum of 6 Straumann® Mini Implants should be placed to stabilize a full maxillary denture.

Maxillary denture stabilization

Proceed as above but pay special attention to:
A minimum of six Straumann® Mini Implants should be placed in the maxilla.
3. Prosthetic Procedure

3.1 Chairside modification of an existing well-fitting and well-functioning denture into an overdenture supported by Optiloc® Retentive System/Straumann® Mini Implants

Caution: It is a prerequisite, however, that the complete denture does not need to be relined by a dental technician.

This workflow illustration refers to a lower denture procedure. The upper denture follows the same steps.

Step 1 – Place white Processing Collar on each Optiloc®
The Processing Collar is used to block out the area surrounding the Optiloc®

Then place a Matrix Housing with a Retention Insert (recommendation white, light) onto each Optiloc® abutment, leaving the white Processing Collar beneath it.

Step 2 – Prepare the complete denture
Hollow out the existing denture base in the areas of the Optiloc® Matrix Housings with Handpiece and resin bur. There should be a minimum space of 1 mm around the housings to allow for sufficient thickness of the self-polymerizing resin.

Step 3 – Seat denture
Use wash impression silicone to confirm adequate clearance between the Matrix Housings and the denture base.

Insert the complete denture into the patient’s mouth and check the clearance. The Matrix Housings fixed on the abutments should not touch the denture base. Reconfirm adequate space using wash impression silicone. Adjust the denture base until seated passively in occlusion without touching the Matrix Housing.
Step 4 – Prepare denture
Apply proper adhesive/primer material in the denture prior to receiving the self-curing PMMA resin.

Step 5 – Polymerize the Matrix Housings
Fill the hollowed area with self-curing PMMA resin to polymerize the Matrix Housings in the denture.

Apply a small amount of acrylic resin to the tissue-contact surface of the denture and around the Matrix Housings. Insert the complete denture into the oral cavity.
Step 6 – Seat denture in occlusion
Once the complete denture is properly seated, maintain the patient in centric occlusion while the acrylic sets.

Step 7 – Discard Optiloc® Processing Collar
Once the resin has cured, remove the complete denture from the mouth and discard the white Optiloc® Processing Collar.
Put the complete denture in hot, but not boiling, water. Place it in a pressure pot when available.

Step 8 – Finish denture
After final curing, remove any excess acrylic and finish the denture base.

If needed, exchange the white, light Optiloc® Retention Insert with other Optiloc® Retention Inserts and insert the final overdenture into the patient’s mouth.
3.2 Creating a new overdenture with the Optiloc® Retentive System

This workflow illustration refers to a lower denture procedure. The upper denture follows the same steps.

Procedure in the dental office – Impression taking on abutment level

Step 1 – Placing the Optiloc® Impression Coping
Place the Impression Coping.

Step 2 – Impression taking
Use the mucodynamic technique for impression taking (vinyl polysiloxane or polyether rubber).

Send the impression to the dental lab.
Procedure in the dental lab

Step 1 – Inserting the Optiloc® Model Analog
Insert the Optiloc® Model Analog into the Optiloc® Impression Coping (see chapter 4 using the Optiloc® tools).

Step 2 – Fabricating the master cast
Pour a master model using standard methods and type-IV-dental stone (DIN 6873).
Step 3 – Placing the Optiloc® Processing Collar Matrix Housing
Place the Matrix Housing incl. a Retention Insert (e.g. 2102.0004-STM, white, light) onto the Optiloc®.

For a chairside polymerization of the Optiloc® Matrix Housing use the Optiloc® Block Out Spacer to create the space needed.

Step 3.1 – Finalizing the new Optiloc overdenture
Place white Processing Collar on all Optiloc® Model Analogs.

Step 3.2 – Processing the overdenture
Process the overdenture according to the standard procedures.

The dental lab will return the finalized Optiloc® overdenture to the dental office.
Step 4 – Seating the new Optiloc® overdenture
Select the appropriate Optiloc® Retention Insert (see chapter 5 Special featured Optiloc® components).

Step 4.1 – Selecting and inserting the Optiloc® Retention Inserts
Exchange the Optiloc® Retention Inserts to the Matrix Housing using the Retention Insert Instrument (brown) (see chapter 4 Using the Optiloc® Tools).

Step 4.2 – Seating the finished overdenture
Seat the finished overdenture.

3.3 Soft reline protocol
When primary stability is not achieved on all implants.
1. Grind down denture base from the existing denture at least 1 mm and reline denture to accommodate the prosthetic heads of each implant. Important: At this step the implants heads must be absent of any contact.
2. Roughen and degrease the tissue-contact surface appropriately.
3. Apply soft relining material onto the tissue-contact surface of the denture.
4. Place the denture on the patient’s mouth and ask patient to apply normal bite pressure in centric occlusion.
5. Allow proper setting time according to the relining material brand of choice.
6. Remove denture and trim excess material with fine scissors or a surgical blade. When available apply glazing material.
7. Do not remove the palate of a maxillary denture during this stage.
8. Ask patient to keep the denture in place for the first 48 hours after placement to prevent tissue overgrowth.
9. With a healing time minimum of two month the soft reliner material is replaced with the final prosthesis. Please refer to Prosthetic workflow 3.1 and 3.2.
10. After osseointegration the palatial plate in maxillary denture can be progressively removed, if desired.
4. Using the Optiloc® Tools

4.1 Optiloc® Matrix Housing Extraction Instrument (Fig. 1)

Removing the Optiloc® Matrix Housing from an overdenture
1. Heat the Optiloc® Matrix Housing Extraction Instrument head (Fig. 2).
2. Apply the hot Optiloc® Matrix Housing Extraction Instrument to the Matrix Housing and let the heat transfer for 2–3 seconds melting the resin around the Matrix Housing.
3. Tilt the Optiloc® Matrix Housing Extraction Instrument to the opposite side of the beak-shape end to remove the Optiloc® Matrix Housing (Fig. 3).

4.2 Optiloc® Laboratory Instrument (blue) (Fig. 4)

Placing the Optiloc® Model Analog
1. Pick up the Optiloc® Model Analog with the opposite side of the Optiloc® Laboratory Instrument (Fig. 5/6).
2. Position the Optiloc® Model Analog in the impression (Fig. 7).
4.3 Optiloc® Retention Insert Instrument (Fig. 8)

Mounting the Optiloc® Retention Insert
1. Pick up the Optiloc® Retention Insert with the gripper end of the Optiloc® Retention Insert Instrument. The Optiloc® Retention Insert will lock on to the tool (Fig. 9).
2. Place the Optiloc® Retention Insert into the Optiloc® Matrix Housing (Fig. 10). The Optiloc® Retention Insert “clicks” into position (Fig. 11).

Demounting the Optiloc® Retention Insert
1. Apply the plunger end of the Optiloc® Retention Insert Instrument to the Optiloc® Retention Insert and engage with light pressure (Fig. 12/13).
2. Remove the Optiloc® Retention Insert from the Optiloc® Matrix Housing using a slight rotational movement (Fig. 14).
3. Use the special indentation in the handle of the Optiloc® Matrix Housing Extraction Instrument (Fig. 1) to remove the Optiloc® Retention Insert from the Optiloc® Retention Insert Instrument with a tilting movement (Fig. 15/16).
5. Specially Featured Optiloc® Components

Optiloc® Retention Inserts
The Optiloc® Matrix System allows a convergence, or divergence, of up to 20 degrees of each implant in relation to the denture's path of insertion.

Note:
It is recommended to use the light retention force first (white). In case it feels too loose for the patient, exchange with inserts with a higher retention force.

Optiloc® Processing Collar
The Processing Collar blocks out the area surrounding the abutment, preventing resin or a bonding agent from flowing into the Matrix Housing and embedding the abutment.

Optiloc® Matrix Housing - Extended
This Matrix Housing - Extended offers an extended attachment option. It is used for low-lying abutment heights or in situations requiring more retention. The attachment may be shortened according to the required height.

Optiloc® Block Out Spacer
The Optiloc® Block Out Spacer is a placeholder for the Optiloc® Matrix Housing. It is used for the model cast, cast metal-reinforced denture or if the Optiloc® Matrix Housing is to be polymerized into the overdenture chairside.
6. Product Reference List

6.1 Straumann® Mini Implants Roxolid® SLA®

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>042.9445</td>
<td>Straumann® Mini Implant, GH 2.8 mm, Ø 2.4 mm, SLA®, ADLC, Roxolid®, 10 mm</td>
</tr>
<tr>
<td>042.9505</td>
<td>Straumann® Mini Implant, GH 3.8 mm, Ø 2.4 mm, SLA®, ADLC, Roxolid®, 10 mm</td>
</tr>
<tr>
<td>042.9525</td>
<td>Straumann® Mini Implant, GH 4.8 mm, Ø 2.4 mm, SLA®, ADLC, Roxolid®, 12 mm</td>
</tr>
<tr>
<td>042.9455</td>
<td>Straumann® Mini Implant, GH 2.8 mm, Ø 2.4 mm, SLA®, ADLC, Roxolid®, 12 mm</td>
</tr>
<tr>
<td>042.9515</td>
<td>Straumann® Mini Implant, GH 3.8 mm, Ø 2.4 mm, SLA®, ADLC, Roxolid®, 12 mm</td>
</tr>
<tr>
<td>042.9535</td>
<td>Straumann® Mini Implant, GH 4.8 mm, Ø 2.4 mm, SLA®, ADLC, Roxolid®, 12 mm</td>
</tr>
<tr>
<td>042.9465</td>
<td>Straumann® Mini Implant, GH 2.8 mm, Ø 2.4 mm, SLA®, ADLC, Roxolid®, 14 mm</td>
</tr>
</tbody>
</table>

Auxiliary Parts

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>046.796</td>
<td>Paralleling Post for Straumann® Mini Implants, sterile</td>
</tr>
<tr>
<td>170.1/170.1-OPT*</td>
<td>Optiloc® Adapter for Handpiece, length 26 mm</td>
</tr>
<tr>
<td>170.2/170.2-OPT*</td>
<td>Optiloc® Adapter for Ratchet, length 17 mm</td>
</tr>
<tr>
<td>027.00075</td>
<td>Needle Drill, long, single use</td>
</tr>
<tr>
<td>027.00115</td>
<td>BLT Pilot Drill, long, Ø 2.2 mm, single-use, TAN</td>
</tr>
<tr>
<td>2102.0004-STM/2102.0004-OPT*</td>
<td>Optiloc® Model Analog, blue, 4 pcs.</td>
</tr>
<tr>
<td>2102.0012-STM/2102.0012-OPT*</td>
<td>Optiloc® Impression Coping, white, 4 pcs.</td>
</tr>
</tbody>
</table>

6.2 Optiloc® Processing Package, Retention Inserts and Matrix Housings

Processing Package

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>5202.0001-STM/5202.0001-OPT*</td>
<td>Optiloc® Processing Package, Optiloc® Matrix Housing, titanium, 2 pcs.</td>
</tr>
<tr>
<td>5202.0002-STM/5202.0002-OPT*</td>
<td>Optiloc® Retention Insert, white, light, 2 pcs.</td>
</tr>
<tr>
<td>5202.0003-STM/5202.0003-OPT*</td>
<td>Optiloc® Retention Insert, yellow, medium, 2 pcs.</td>
</tr>
<tr>
<td>5202.0004-STM/5202.0004-OPT*</td>
<td>Optiloc® Retention Insert, green, strong, 2 pcs.</td>
</tr>
<tr>
<td>5202.0005-STM/5202.0005-OPT*</td>
<td>Optiloc® Processing Collar, silicone, 2 pcs.</td>
</tr>
</tbody>
</table>

Retention Inserts

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>2102.0003-STM/2102.0003-OPT*</td>
<td>Optiloc® Retention Insert, red, extra-light, 4 pcs.</td>
</tr>
<tr>
<td>2102.0004-STM/2102.0004-OPT*</td>
<td>Optiloc® Retention Insert, white, light, 4 pcs.</td>
</tr>
<tr>
<td>2102.0005-STM/2102.0005-OPT*</td>
<td>Optiloc® Retention Insert, yellow, medium, 4 pcs.</td>
</tr>
<tr>
<td>2102.0006-STM/2102.0006-OPT*</td>
<td>Optiloc® Retention Insert, green, strong, 4 pcs.</td>
</tr>
<tr>
<td>2102.0007-STM/2102.0007-OPT*</td>
<td>Optiloc® Retention Insert, blue, extra-strong, 4 pcs.</td>
</tr>
<tr>
<td>2102.0008-STM/2102.0008-OPT*</td>
<td>Optiloc® Retention Insert, black, ultra-strong, 4 pcs.</td>
</tr>
</tbody>
</table>

Matrix Housings

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>2102.0001-STM/2102.0001-OPT*</td>
<td>Optiloc® Matrix Housing, 4 pcs.</td>
</tr>
<tr>
<td>2102.0009-STM/2102.0009-OPT*</td>
<td>Optiloc® Matrix Housing - Elliptic, 4 pcs.</td>
</tr>
<tr>
<td>2102.0010-STM/2102.0010-OPT*</td>
<td>Optiloc® Matrix Housing - Extended, 4 pcs.</td>
</tr>
</tbody>
</table>

These articles are only available in Turkey.
6.3 Optiloc® tools and auxilliary parts

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article</th>
</tr>
</thead>
</table>
| 5102.0000-STM/5102.0000-OPT* | Optiloc® Equipment Box, with 3 Instruments
Optiloc® Laboratory Instrument (blue)
Optiloc® Retention Insert Instrument (brown)
Optiloc® Matrix Housing Extraction Instrument (gray) |
| 2102.0023-STM/2102.0023-OPT* | Optiloc® Block Out Spacer, white, 4 pcs. |
| 2102.0011-STM/2102.0011-OPT* | Optiloc® Processing Collar, silicone, 10 pcs. |
| 3202.0003-STM/3202.0001-OPT* | Optiloc® Retention Insert Instrument |
| 3202.0002-STM/3202.0002-OPT* | Optiloc® Laboratory Instrument |
| 3202.0003-STM/3202.0003-OPT* | Optiloc® Matrix Housing Extraction Instrument |
| 046.795 | X-ray Reference Foil for Straumann® Mini Implants |
| 049.076V4 | X-ray Reference Spheres, Ø 5 mm, stainless steel |
| 046.119 | Ratchet, including service instrument, length 84 mm, stainless steel |
| 066.1100 | Torque Control Device for Ratchet – surgical, stainless steel |
| 046.064 | Holding Key, length 85 mm, stainless steel |
| 045.111V4 | Cleaning Brush for Ratchet, length 100 mm, Ø 4.5mm, stainless steel/nylon |

These articles are only available in Turkey.
6.4 Straumann® Modular Cassette

<table>
<thead>
<tr>
<th>Art. No.</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>041.761</td>
<td>Straumann® Modular Cassette, A Module</td>
</tr>
<tr>
<td>041.766</td>
<td>A Module, Ratchet Tray</td>
</tr>
<tr>
<td>041.764</td>
<td>A Module, Grommet Tray, 3 small + 3 large</td>
</tr>
<tr>
<td>041.762</td>
<td>A Module, Grommet Tray, 6 small</td>
</tr>
</tbody>
</table>
7. Further Information

For more detailed information on the instructions for use, please consult the following documents:

- Instructions for Use: Straumann® Mini Implants (702198) http://ifu.straumann.com
- Instructions for Use: Straumann® Novaloc® and Optiloc® Matrix System (704486) http://ifu.straumann.com
- Instructions for Use: Optiloc® http://ifu.valoc.ch/
- Straumann® Surgical and Prosthetic Instruments, Care and Maintenance (702000/en)
- Straumann® Modular Cassette, Basic Information (702527/en)
- Instructions for Use: Straumann® Non-sterile Surgical Instruments and Auxiliaries (701124) http://ifu.straumann.com
- Instructions for Use: Straumann® Prosthetic Planning and Placement Tools (702879) http://ifu.straumann.com
- Instructions for Use: Straumann® Impression Components (703287) http://ifu.straumann.com
Notes