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diverse, and have several different clinical applications, doubts linger as to their effect in stimulating osteo-
genesis. The objective of this study was to make an in vitro evaluation of the viability and differentiation of
osteoblastic cells cultured on the surface of the following collagen membranes: Jason® (Botiss Biomaterials),
Collprotect® (Botiss Biomaterials), and Bio-Gide® (Geistlich).
Material and methods: Fragments of the 3 resorbable collagen membranes (5 x 5 mm) were used, and pre-
osteoblastic SAOS-2 cells (ATCC, USA) were plated on their porous surfaces. Evaluation of the membranes
was performed at 3, 5 and 7 days, considering the following parameters: (1) topographic analysis of the dif-
ferent surfaces by scanning electron microscope; (2) cellular viability by MTT, (3) quantification of type I col-
lagen and osteopontin by Elisa. The quantitative analyses were carried out using a significance level of 5%.
Results: Collprotect® and Jason® membranes presented a rough surface with an irregular aspect on both
sides, while double-layered Bio-Gide® had one layer with a smooth surface and the other with a rough sur-
face along each respective length. The viability assays revealed that the cells cultured the cells grown on
Collprotect® showed higher viability than those grown in Bio-Gide® or Jason®, especially after 5 and 7 days.
After 3 and 5 days, evaluation of type I collagen showed that the cells plated on the Jason® and Collprotect®
surfaces had greater collagen secretion than those plated on BioGide®. After 7 days, an increase in osteopon-
tin levels was observed when the cells were plated on all the experimental membranes, compared with the
control group.
Conclusion: All the tested membranes were suitable for use in GTR clinical procedures. Their indication in
specific regenerative cases depends on the mechanical and biological properties of their originating tissues,
thus enabling better results and assertive choices by dental professionals.

© 2023 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Guided tissue regeneration (GTR) treats intraosseous periodontal
defects with a combination of membranes and biological barriers to
produce clinically significant effects on the clinical attachment level
and probing depth, hence improving periodontal treatment progno-
sis and effectiveness [1]. Membranes help stabilize blood clots, acti-
vate primary intention healing, isolate the defect in relation to
gingival soft tissues, and preserve space [2], thereby preventing
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epithelial and connective tissues from invading and growing into
bone defects [3]. Membranes with many layers of nanofibers have
recently been developed to encourage bioactivity and cellular, tissue,
and vascular stimulation, and also support collagen matrices that can
be used as soft tissue graft alternatives for periodontal plastic surgery
[4].

Collagen has several significant properties, including biocompati-
bility and biodegradability [5]. Another is hemostasis, whereby tissue
healing is promoted by induced chemotaxis of cells such as fibro-
blasts [6]. Human and porcine collagen matrices have been devel-
oped as successful alternatives for standard conjunctival grafting [4].
The porous structure of nanofibrous membrane plays a significant
role in the osteoconductive properties of the material, enabling
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osteoblast adhesion, proliferation and differentiation, and tissue neo-
formation [7].

The collagen membranes used in dental procedures are
obtained primarily from tendon, dermis, skin, or pericardium, and
are mostly derived from bovine or porcine sources [8]. Structural
variances among the membranes have been identified, given the
numerous sites of possible porcine tissue extraction from the ani-
mal. The Jason® membrane is derived from the pericardium,
whereas Bio-Gide® is derived from the peritoneum, and
Collprotect®, from the periderm.

The Jason® membrane is composed of porcine-derived type I and
Il collagen, and is produced in a multistage standard cleaning process
that removes non-collagenous cells and components, while retaining
the original and porous nature of the tridimensional collagen struc-
ture. Tolerance studies and clinical trials have demonstrated its bio-
compatibility [9]. Bio-Gide® is a double-layered membrane derived
from pig peritoneum. It has received the most widespread attention,
and is regarded as the gold standard in comparison with other mate-
rials. It exhibits delayed resorption and aids in periodontal regenera-
tion [10]. Lastly, Collprotect® is a native collagen membrane that is
derived from pig dermis, and that retains the inherent hemostatic
effect of collagen, which promotes early wound stability and natural
healing. It adapts well to the surface, and has good tissue integration,
thus functioning well in most situations requiring intermediate sta-
bility and ease of handling [11].

Given the multiple sources and clinical applications of collagen
membranes, the purpose of this study was to make an in vitro evalua-
tion of the surface topography of different porcine collagen mem-
branes, and assess the effect of these membranes on human
osteoblastic cell culture, taking into account cell viability, and secre-
tion of type I collagen and osteopontin, which are important proteins
in the early stages of bone neoformation.

2. Material and methods
2.1. Sample groups and cell culture

The study comprised the following three porcine-derived mem-
branes, measuring 30x40 mm each: Bio-Gide® (Geistlich Biomater-
iais), Collprotect® (Botiss Biomateriais), and Jason® (Botiss
Biomateriais). Human osteoblastic cells (Saos-2, HTB-85TM) obtained
from the American Type Culture Collection (ATCC, Manassas, VA,
USA), were plated on the porous surface of each membrane after
approval by the Ethics Committee of the Sao Leopoldo Mandic
Research Institute, Campinas, Brazil (#2019/0271). The cells were
cultured in McCoy’s 5A medium (Sigma, St. Louis, MO, USA), supple-
mented with 10% fetal bovine serum (Cultilab®, Campinas SP, Brazil)
and 1% antibiotic-antimycotic solution (penicillin-streptomycin)
(Sigma, St. Louis, MO, USA). The culture medium was replaced every
two days, and culture progression was monitored with an inverted
microscope (Nikon Eclipse TS100, Tokyo, Japan). The cells were kept
at 37 °C throughout the culture period, in a humidified environment
containing 5% CO, and 95% humidity.

2.2. Topographic analysis

The ultrastructural morphology of the samples was evaluated
using a high-resolution field emission scanning electron microscope
(FE-SEM) (Zeiss FEG Auriga and FEI SEM Magellan 400 L), with sec-
ondary electrons accelerated to 5 kV in high vacuum. The samples
were metallized with a 20 nm gold conductive film and mounted on
stubs [12]. Three specimens of each surface were photographed at
magnifications ranging from 500 X to 1000 X.
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2.3. Cell viability assay

After 24, 48 and 72 h of cell plating, 10 uL of MTT solution (5 mg/
mL, Sigma, USA) diluted in McCoy’s 5A serum-free medium was
added to the cultures, which were then incubated for 3 h at 37 °C. Fol-
lowing incubation, 100 L of 10% DMSO solution (Dimethylsulfoxide,
LGC, Sao Paulo, SP, Brazil) was added [13]. After the crystals were sol-
ubilized, an ELX800 microplate reader (BioTek Epoch Instruments)
was used for quantification at 590 nm, and the optical density (OD)
measurements were obtained. Cells plated on polystyrene surfaces
were used as the control. All the experiments were performed in
blind fashion, in biological quadriplicate.

2.4. Enzyme-linked immunosorbent assay (ELISA)

After 3, 5 and 7 days, the type I collagen and osteopontin secreted
by the cells plated on the different surfaces were quantified by the
enzyme-linked immunosorbent assay (ELISA). The supernatant was
aspirated and centrifuged at 5000 g for 15 min at 4 °C, and aliquots of
each sample were assayed by means of ELISA to determine the type I
collagen and osteopontin levels, according to the manufacturer’s rec-
ommendations (R&D Systems, Minnesota, MN, USA). The results
were calculated using the standard curves created in each assay and
measured in a spectrophotometer (BioTek Epoch, Winooski, VT, USA)
at a wavelength of 450 nm. All the experiments were performed in
blind fashion, in biological triplicate.

2.5. Statistical analysis

Descriptive and exploratory analyses of all the data were per-
formed. Since the data did not meet the assumptions of analysis of
variance (ANOVA), generalized linear models were applied consider-
ing the main effects and the interaction among them. The analyses
were conducted using the R program, with a significance level of 5%.

3. Results
3.1. Surface topography

The ultrastrucutral morphology of the surfaces is shown in Fig. 1.
All the surfaces exhibited porous and fibrillar characteristics, which
allowed internal cell proliferation upon grafting. Collprotect® (A, B)
displayed collagen fibers organized on the surface in a loose, cross-
linked mesh configuration. On the other hand, Jason® (C, D) demon-
strated a homogeneous crosslinked surface with honeycomb
features. Lastly, the topography of Bio-Gide® (E, F) revealed two dis-
tinct sides, one with smooth, homogeneous, and non-crosslinked col-
lagen fibers, and the other with crosslinked collagen fibers and
homogeneous characteristics.

3.2. Cellviability

Cell viability results for all the groups are shown in Table 1. The
cells grown in polystyrene (control group) presented more viability
than the other cell groups at all the time periods (p < 0.05). As for the
membranes evaluated, the cells grown in Collprotect® showed higher
viability than those grown in Bio-Gide® or Jason®, especially after 5
and 7 days (p < 0.05).

3.3. Quantification of type I collagen and osteopontin

The quantification of the proteins secreted by the osteoblasts
plated on the membranes is depicted in Table 2. At 3 days, the cells
plated on Jason® showed greater secretion of type I collagen than
those plated on the other membranes (p < 0.05). At 5 days, the cells
plated on Collprotect® and Jason® surfaces showed greater secretion
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Fig. 1. Representative SEM image of Collprotect® (A, B), Jason® (C, D) and Bio-Gide® (E, F) membranes. Bars: A,C=10 um; B,Dand E=5 um; F=1 pum.

of type I collagen than those plated on Bio-Gide® (p < 0.05). At 7 days,
the collagen levels were lower for cells plated on all the experimental
membranes than on control group (p < 0.05).

The results for osteopontin quantification are shown in Table 3.
The lowest levels for osteopontin were observed for the cells plated
on polystyrene (control) at all the experimental time points evalu-
ated (p < 0.05). At 3 days, the cells plated on Collprotect® exhibited

Table 1

Quantification of cell viability in osteoblastic cells plated on the collagen mem-
branes at 3, 5 and 7 days. Data is presented as a mean (standard deviation)
expressed in Arbitrary Units (AU).

Group Time (days)

3 5 7
Control 0.293(0.053)Ca  0.374(0.010)Ba  0.653 (0.093) Aa
Bio-Gide® 0.145 (0.007)Ac ~ 0.139(0.006)Ac  0.148 (0.027) Ac
Jason® 0.174(0.016)Ab  0.144(0.007)Bc  0.145 (0.024) Bc
Collprotect®  0.189 (0.008)Ab  0.184 (0.015)Ab  0.181(0.018) Ab

p(group)<0.0001; p(time)<0.0001; p(interaction)<0.0001. Different letters
(uppercase horizontally and lower case vertically indicate statistically signifi-
cant differences (p<0.05).

higher osteopontin concentration than the other cell groups
(p < 0.05). At 5 days, the highest osteopontin concentration was
observed when the cells were plated on Bio-Gide® (p < 0.05). After
7 days, an increase in osteopontin levels was observed when the cells
were plated on all the experimental membranes, compared with the
control group (p < 0.05).

4. Discussion

Resorbable membranes were developed with the aim of avoiding
a possible second surgery, thereby reducing morbidity and improving
tissue recovery. However, these membranes have certain drawbacks,
such as the significant variance in the acceptable lifetime of the bar-
rier function due to degradation [14]. This is an important consider-
ation, given that the membranes must be kept in place for at least 4
to 6 weeks to accomplish effective tissue regeneration [15].

The mechanical and biological properties of the membranes
should offer a favorable environment for bone neoformation, both in
terms of barrier occlusiveness and receptor site protection, particu-
larly as regards admitting nutrition into the regeneration area.
Accordingly, this study investigated the characteristics of the
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Table 2
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Quantification of type I collagen secreted by osteoblastic cells plated on the collagen membranes at 3, 5 and
7 days. Data is presented as a mean (standard deviation) expressed in pg/mL.

Group Time (days)

3 5 7
Control 927.129 (42.105) Ba 1057.761 (67.489) ABa 1224.051 (63.944) Aa
Bio-Gide® 54.841 (44.829) Ac 52.856 (4.145) Ab 6.505 (2.033) Ab
Jason® 966.759 (171.692) Aa  1121.955 (263.811) Aa 5.632 (2.590) Bb
Collprotect® 401.926 (74.316) Bb 1078.698 (383.995) Aa 5.530(2.382) Cb

p(group)<0.0001; p(time)<0.0001; p(interaction)<0.0001. Distinct letters (upper case horizontally and
lower case vertically indicate statistically significant differences (p<0.05).

topography, as well as the viability and osteogenic differentiation of
cells cultured on different porcine membranes. The results found sig-
nificant structural variations between the membranes. Collprotect®
and Jason® both had rough surfaces with an irregular aspect on both
sides. On the other hand, Bio-Gide® is double-layered, with one
smooth side and another rough side, along each respective length.
These findings highlight the variation in porcine tissues found in the
membranes, inasmuch as Bio-Gide® is derived from the peritoneum,
Collprotect®, from the periderm, and Jason®, from the pericardium.

Collagen membranes have structural variances that depend on
their source, and that are indicated for distinct clinical situations.
Jason®, for example, has slow enzymatic degradation that provides
an extended time barrier, thus making it suitable for treating larger
defects, such as extended ridge augmentations and maxillary sinus
elevation with additional lateral augmentation [9,16,17]. On the
other hand, although Bio-Gide® has a second layer, it has a faster
resorption period, averaging 2 to 3 months when a single layer is
employed [10]. Lastly, Collprotect® has a collagen structure with a
naturally rough surface that promotes cell adhesion and migration,
as well as angiogenesis [18].

The three membranes used in this investigation are all natural,
with no artificial cross-linking, which could result in diminished tis-
sue integration and vascularization, as well as increased risk of for-
eign body reactions [19]. Additionally, when compared with the
synthetic ones, collagen membranes possess low stiffness and rapid
enzymatic degradation in vivo [20]. In order to overcome some clini-
cal shortcomings such as the mechanical and biodegradable stability,
biological cross-linking methods have been introduced to cross-link
collagen [21,22]. However, artificial fiber cross-linking reduces bio-
compatibility, tissue integration, revascularization, and degradation,
and causes more postoperative complications than natural mem-
branes, including suture dehiscence and oral exposure [23,24,25]. In
comparison, the membranes evaluated showed biocompatibility,
excellent clinical management, and satisfactory results in terms of
support and a physiological barrier function providing protection to
the tissue regeneration area. This makes the membranes suitable for
use in current surgeries [26,27].

Table 3

Quantification of OPN secreted by osteoblastic cells cultured on the collagen mem-
branes at 3, 5 and 7 days. Data is presented as a mean (standard deviation) expressed
in pg/mL.

Group Time (days)

3 5 7
Control 46.380 (14.088)Cc 72.823(2.071)Bc 112.199 (27.904)Ab
Bio-Gide® 76.439 (8.287)Cb 176.688 (12.178)Ba  214.657 (31.034)ABa
Jason® 72.773 (16.351)Cb ~ 119.783(4.233)Bb ~ 233.743(7.574)Aa

Collprotect®  103.058(20.232)Ba 117523 (19.454)Bb  197.581 (40.136)Aa

p (group) <0.0001; p(time)<0.0001; p(interaction)<0.0001. Different letters (upper-
case horizontally and lower case vertically indicate statistically significant differences
(p<0.05).

Cells plated on Collprotect® and Jason® had higher viability than
those plated on Bio-Gide®, notably after 3 and 5 days. The surface of
both membranes was irregular and porous, characteristics that con-
tribute to cell adhesion and spread. These findings highlight the
importance of topographical aspects in cell proliferation and viability
parameters. In fact, surface roughness may promote maximum cell-
substrate interaction through the formation of focal adhesion sites,
which are required for sustained adherence, cell growth, and prolifer-
ation [28,29]. Furthermore, collagen scaffolds mimic extracellular
matrix and favor the adhesion to the substrate of various cell types,
and stimulates cell proliferation and differentiation [30].

In terms of type I collagen synthesis, the cells plated on
Collprotect® and Jason® secreted more collagen than those plated on
BioGide®. Type I collagen is a critical protein in the development of
mineralized matrix and hydroxyapatite crystal nucleation. The syn-
thesis of type I collagen is an early event in the development of osteo-
blasts. After cells secrete collagen, alkaline-phosphatase, osteocalcin
and bone sialoprotein are all expressed sequentially [31].

Osteopontin is a non-collagenous protein found on the surface of
the bone matrix, and plays a role in osteoblast and osteoclast miner-
alization and adhesion. It is also found in various tissues. In addition
to promoting osteoblast adhesion, it aids in managing hydroxyapatite
crystal formation [32]. In general, osteopontin is described as a multi-
functional protein that engages in physiologic processes such as tis-
sue healing, bone formation and remodeling, and that appears in the
early and late stages of mineralization [33].

The results of the study revealed that osteopontin secretion was
higher on the cells plated on the surface of Jason® and Collprotect®
than on the control group surface. Furthermore, Collprotect® stimu-
lated higher osteopontin secretion than that of the control group
after 3 days. The cells plated on the Bio-Gide® surface showed higher
levels of osteopontin than those plated on the other groups, at all the
experimental time points, thus showing that its characteristics have
the chemical potential of participating effectively in bone formation,
which is an inherent property of collagen membranes [34].

This in vitro study indicated that membranes of different porcine
origin, such as Jason® and Collprotect®, presented satisfactory results,
and can thus be considered for clinical procedures that require mem-
branes to improve tissue regeneration. In vivo experimental models
should be used in future investigations to determine which mem-
brane is optimal for tissue healing, as well as the therapeutic implica-
tions. Furthermore, it is important to evaluate the impact of these
collagen scaffolds on diverse osteoblastic-like cell lineages in order to
validate the current study’s findings.
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