SLActive® en pacientes irradiados.

Predictibilidad más allá de las expectativas

Uno de los grupos de pacientes que más desafíos presenta para el tratamiento con implantes incluye a aquellos pacientes que se someten a una combinación de cirugía, quimioterapia y radioterapia por un tumor. La calidad ósea en estos pacientes se ve gravemente afectada. 

Rendimiento de SLActive® en pacientes irradiados

Seguimiento de 1 año3


1 paciente fue excluido del estudio debido a recidiva tumoral. Por consiguiente, el gráfico se basa en 19 pacientes con 97 implantes.

Seguimiento de 5 año13,14


Excluyendo 4 pacientes más fallecidos por cáncer Por consiguiente el gráfico se basa en 15 pacientes con 79 implantes.

Ensayo clínico aleatorizado:3
102 implantes, 20 pacientes
Después de la cirugía, radioterapia y quimioterapia por carcinoma oral

Lo que dicen los médicos

Novedades de Dental Tribune International

Observa una entrevista al Prof. Nelson para obtener más información sobre el estudio y los desafíos de la rehabilitación protésica de pacientes irradiados. Descubre cómo los implantes SLActive® han mejorado la calidad de vida de estos pacientes.

Rendimiento sin concesiones.

Incluso en pacientes diabéticos.

  • Los pacientes con diabetes tienen una menor capacidad de cicatrización de las heridas15,16, lo que supone un riesgo para los implantes. Más información >

  • En todo el mundo, 1 de cada 6 adultos mayores de 60 años  tiene diabetes.17 Más información >

Dada la creciente prevalencia de diabetes tipo 2, ¿cómo pueden los odontólogos manejar este riesgo, especialmente en los pacientes más mayores?

  • Crecientes pruebas clínicas del rendimiento altamente predecible de SLActive® en pacientes diabéticos. 
  • Un nuevo estudio clínico19 en el que se comparó el rendimiento de SLActive® en pacientes con y sin diabetes demostró el rendimiento sin concesiones de los implantes SLActive®.
  • Tasa de éxito del implante del 100% en el grupo de diabéticos después de 2 años
  • Cambios óseos similares a los observados en individuos sanos
  • A pesar de los menores niveles de calidad ósea observados, todos los implantes de este estudio demostraron una buena estabilidad primaria.

Rendimiento en el grupo de pacientes diabéticos19

Estudio clínico prospectivo de casos y controles (15 individuos diabéticos y 14 no diabéticos)


  • Tasa de éxito del implante del 100% en el grupo de diabéticos después de 2 años

  • Cambios óseos similares a los observados en individuos sanos

  • A pesar de los menores niveles de calidad ósea observados, todos los implantes de este estudio demostraron una buena estabilidad primaria.

Principales investigadores detrás del estudio

Lo que dicen los médicos

La colocación de implantes en pacientes fumadores a menudo está asociada a altas tasas de fracaso, riesgo de infecciones posoperatorias y pérdida de hueso marginal.29

SLActive®: previsibilidad elevada en fumadores

  • Un estudio clínico reciente que comparaba el rendimiento de SLActive® en grupos de pacientes fumadores y no fumadores demostró unos resultados excelentes con SLActive®:
  • 96 pacientes, 130 implantes SLActive®, seguimiento de 5 años, tasa de supervivencia del 100%

Rendimiento en el grupo de pacientes fumadores30

Estudio clínico prospectivo de casos y controles (47 fumadores y 49 no fumadores)


¿Tienes alguna pregunta? Ponte en contacto con nosotros.

Acuerdo sobre el uso de los datos*

Lee nuestra política de privacidad.

Vuelve a escribir el código anterior

Referencias

* Criterios de éxito según Buser D. et al. Long-term stability of osseointegrated implants in augmented bone: A 5-year prospective study in partially edentulous patients. Int J Periodont Restor Dent. 2002; 22: 108–17.
** Ajustado, sin incluir a los pacientes fallecidos por cáncer.

1 Straumann SLActive implants compared to Straumann SLA implants. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011 Apr;22(4):349-56. doi: 10.1111/j.1600-0501.2011.02172.x; Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research A, 76(2):323-334, 2006. ; De Wild M. Superhydrophilic SLActive® implants. Straumann document 151.52, 2005 ; Katharina Maniura. Laboratory for Materials – Biology Interactions Empa, St. Gallen, Switzerland Protein and blood adsorption on Ti and TiZr implants as a model for osseointegration. EAO 22nd Annual Scientific Meeting, October 17 – 19 2013, Dublin ; Schwarz, F., et al., Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive®) and conventional SLA® titanium implants: an immunohistochemical study in dogs. J Clin.Periodontol. 35.1 (2008): 64–75. ; Rausch-fan X, Qu Z, Wieland M, Matejka M, Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dental Materials 2008 Jan;24(1):102-10. Epub 2007 Apr 27. ; Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA® titanium implants: Preliminary results of a pilot study in dogs. Clinical Oral Implants Research, 11(4): 481-488, 2007. Raghavendra S, Wood MC, Taylor TD. Int. J. Oral Maxillofac. Implants. 2005 May–Jun;20(3):425–31. 9 Oates TW, Valderrama P, Bischof M, Nedir R, Jones A, Simpson J, Toutenburg H, Cochran DL. Enhanced implant stability with a chemically modified SLA® surface: a randomized pilot study. Int. J. Oral Maxillofac. Implants. 2007;22(5):755–760.
2 Nicolau P, Guerra F, Reis R, Krafft T, Benz K, Jackowski J. 10-year outcomes with immediate and early loaded implants with a chemically modified SLA surface. Quintessence Int. 2018 Dec 18:2-12.
3 Patients treated with dental implants after surgery and radio-chemotherapy of oral cancer. Heberer S, Kilic S, Hossamo J, Raguse J-D, Nelson K. Rehabilitation of irradiated patients with modified and conventional sandblasted, acid-etched implants: preliminary results of a split-mouth study. Clin. Oral Impl. Res. 22, 2011; 546–551.
4 Yerit, K., Posch, M., Seemann, M., Hainich, S., Dortbudak, O., Turhani, D., Ozyuvaci, H., Watzinger, R. and Ewers, R. (2006) Implant Survival in Mandibles of Irradiated Oral Cancer Patients. Clinical Oral Implants Research, 17, 337-344. http://dx.doi.org/10.1111/j.1600-0501.2005.01160.x.
5 Verdonck, H.W.D., Meijer, G.J., Laurin, T., Nieman, F.H.M., Stoll, C., Riediger, D., Stoelinga, P.J.W. and de Baat, C. (2007) Assessment of Vascularity in Irradiated and Non-Irradiated Maxillary and Mandibular Alveolar Minipig Bone Using Laser Doppler Flowmetry. International Journal of Oral Maxillofacial Implants, 22, 774-778.
6 Hu, W.W., Ward, B.B., Wang, Z. and Krebsbach, P.H. (2010) Bone Regeneration in Defects Compromised by Radiotherapy. Journal of Dental Research, 89, 77-81. http://dx.doi.org/10.1177/0022034509352151.
7 Wang, R., Pillai, K. and Jones, P.K. (1998) Dosimetric Measurements of Scatter Radiation from Dental Implants in Stimulated Head and Neck Radiotherapy. International Journal of Oral Maxillofacial Implants, 13, 197-203.
8 Grotz, K.A., Al-Nawas, B., Piepkorn, B., Reichert, T.E., Duschner, H. and Wagner, W.(1999) Micromorphological Findings in Jaw Bone after Radiotherapy. Mund-, Kiefer- und Gesichtschirurgie, 3, 140-145.
9 Chambrone L, Mandia J, Shibli JA, Romito GA, Abrahao M. Dental Implants Installed in Irradiated Jaws: A Systematic Review. Journal of Dental Research. 2013;92(12 Suppl):119S-130S. doi:10.1177/0022034513504947.
10 Shugaa-Addin B, Al-Shamiri H-M, Al-Maweri S, Tarakji B. The effect of radiotherapy on survival of dental implants in head and neck cancer patients. Journal of Clinical and Experimental Dentistry. 2016;8(2):e194-e200. doi:10.4317/jced.52346.
11 Nooh N. Dental implant survival in irradiated oral cancer patients: a systematic review of the literature. Int J Oral Maxillofac Implants. 2013 Sep-Oct;28(5):1233-42. doi: 10.11607/jomi.3045.
12 Dholam KP, Gurav SV. Dental implants in irradiated jaws: A literature review. J Can Res Ther [serial online] 2012 [cited 2016 Aug 17];8:85-93. Available from: http://www.cancerjournal.net/text.asp?2012/8/6/85/92220.
13 Nelson, K., Stricker, A., Raguse, J.-D. and Nahles, S. (2016), Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: a clinical clarification. J Oral Rehabil, 43: 871–872. doi:10.1111/joor.12434
14 C. NACK, J.-D. RAGUSE, A. STRICKER , K. NELSON & S. NAHLES. Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: five-year follow-up. Journal of Oral Rehabilitation 2015 42; 57—64.
15 Devlin H, Garland H, Sloan P. Healing of tooth extraction sockets in experimental diabetes mellitus. J. of Oral Maxillofac. Surg. 1996; 54:1087-1091
16 Wang F1, Song YL, Li DH, Li CX, Wang Y, Zhang N, Wang BG. Type 2 diabetes mellitus impairs bone healing of dental implants in GK rats. Diabetes Res Clin Pract. 2010; 88:e7-9.
17 IDF Diabetes Atlas, 7th Edition, 2015 http://www.diabetesatlas.org/.
18 US Centers for Disease Control and Prevention. Diabetes 2014 report card. Available from: www.cdc.gov/diabetes/library/reports/congress.html. Accessed September 2015.
19 Cabrera-Domínguez J, Castellanos-Cosano L, Torres-Lagares D, Machuca-Portillo G. A Prospective Case-Control Clinical Study of Titanium-Zirconium Alloy Implants with a Hydrophilic Surface in Patients with Type 2 Diabetes Mellitus. Int J Oral Maxillofac Implants. 2017 Sep/Oct;32(5):1135-1144. doi: 10.11607/jomi.5577; Cabrera-Domínguez J. A prospective, two-year clinical trial of titanium-zirconium alloy implants (Roxolid® Straumann®) with hydrophilic surface (SLActive®) in patients with Type 2 Diabetes Mellitus. presented during 26th Annual Scientific Meeting of the European Association of Osseointegration – 5-7 Oct 2017, Madrid, Spain.
20 Hotchkiss KM, Ayad NB, Hyzy SL, Boyan BD, Olivares-Navarrete R. Dental implant surface chemistry and energy alter macrophage activation in vitro. Clin. Oral Impl. Res. 00, 2016, 1–10. doi: 10.1111/clr.12814.
21 Lee R, Hamlet SM, Ivanovski S. The influence of titanium surface characteristics on macrophage phenotype polarization during osseous healing in type I diabetic rats: A pilot study. Clin Oral Impl Res (accepted 4/8/2016).
22 El Chaar E, Zhang L, Zhou Y, et al. Osseointegration of Superhydrophilic Implants Placed in Defect Grafted Bones. International Journal of Oral & Maxillofacial Implants . Mar/Apr2019, Vol. 34 Issue 2, p443-450
23 Müller E, Rottmar M, Guimond S, Tobler U, Stephan M, Berner S, Maniura K The interplay of surface chemistry and (nano-)topography defines the osseointegrative potential of Roxolid® dental implant surfaces. eCM Meeting Abstracts 2017, Collection 3; SSB+RM (page 31).
24 EMPA (2017) Report additional experiments: Impact of RXD SLA, RXD SLAnano, RXD SLActive, and RXD pmod SLA surfaces on protein adsorption, blood coagulation, and osteogenic differentiation of HBCs. Final report: Impact of RXD SLA, RXD SLAnano, RXD SLActive, and RXD pmod SLA surfaces on protein adsorption, blood coagulation, and osteogenic differentiation of HBCs. EMPA, Swiss Federal Laboratories for Materials Science and Technology (data on file).
25Stavropoulos A et al. Greater Osseointegration Potential with Nanostructured Surfaces on TiZr: Accelerated vs. Real-Time Ageing. Materials (Basel). 2021 Mar 29;14(7):1678.
26 Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral maxillofac Implants 2009: 24:63-74
27 Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. 2015. The role of nanostructures and hydrophilicity in osseointegration: In-vitro protein-adsorption and blood-interaction studies. J Biomed Mater Res Part A2015:103A:2661–2672.
28 Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S. Nanostructures and hydrophilicity influence osseointegration – A biomechanical study in the rabbit tibia. Clin. Oral Impl. Res. 25, 2014, 1041–1050doi: 10.1111/clr.12213
29 Chrcanovic BR, Albrektsson T, Wennerberg A Smoking and dental implants: A systematic review and meta-analysis. J Dent. 2015 May;43(5):487-98
30 Alsahhap A et al. Survival of Titanium-Zirconium and Titanium Dental Implants in Cigarette-smokers and Never-smokers: A 5-Year Follow-up. Chin J Dent Res. 2019;22(4):265-272
31 Hotchkiss KM et al. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Mater. 2019 Jan;35(1):176-184.
32 Hsu JT, Shen YW, Kuo CW, Wang RT, Fuh LJ, Huang HL. Impacts of 3D bone-to- implant contact and implant diameter on primary stability of dental implant. J Formos Med Assoc. 2017 Aug;116(8):582-590. ; Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991 Jul;25(7):889-902 ; Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620. ; Goyal N., Priyanka R. K. Effect of various implant surface treatments on osseointegration – a literature review. Indian Journal of Dental Sciences. 2012;4:154–157