SLActive® in pazienti trattati con radioterapia

Predicibilità al di là delle aspettative.

Uno dei gruppi di pazienti più impegnativi nel trattamento implantare è quello dei pazienti sottoposti ad una combinazione di intervento chirurgico, chemioterapia e radioterapia a causa di tumore. La qualità ossea è gravemente compromessa in questi pazienti. 

Prestazioni di SLActive® nei pazienti trattati con radioterapia

Follow-up a 1 anno3


1 paziente è stato escluso dallo studio a causa di recidiva del tumore. Pertanto, il grafico si basa su 19 pazienti con 97 impianti.

Follow-up a 5 anni13,14


Escludendo altri 4 pazienti, deceduti a causa di cancro. Il grafico si basa su 15 pazienti con 79 impianti.

Studio clinico randomizzato:3
102 impianti, 20 pazienti
Post-chirurgia, radioterapia e chemioterapia per il carcinoma orale

L’opinione dei medici

Aggiornamenti di Dental Tribune International

Guarda un'intervista del Prof Nelson per saperne di più sullo studio e sulle sfide della riabilitazione protesica dei pazienti trattati con radioterapia. Scopri come gli impianti SLActive® hanno migliorato la qualità della vita di questi pazienti.

Prestazioni senza compromessi

Anche nei pazienti diabetici.

I pazienti diabetici hanno una ridotta capacità di guarigione delle ferite15,16, che mette a rischio gli impianti. Ulteriori informazioni >

In tutto il mondo, 1 adulto su 6 con più di 60 anni  è affetto da diabete.17 Ulteriori informazioi >

A seguito dell'aumento costante del diabete di tipo 2, i dentisti come possono affrontare questo rischio, soprattutto nei pazienti più anziani?

  • Aumento dell'evidenza clinica di prestazioni altamente predicibili di SLActive® in pazienti diabetici. 
  • Un nuovo studio clinico19, che ha comparato le prestazioni di SLActive® in pazienti con e senza diabete, ha evidenziato prestazioni senza compromessi degli impianti SLActive®.
  • 100% di successo nel gruppo di pazienti diabetici dopo 2 anni
  • Alterazioni ossee simili a quelle delle persone sane
  • Nonostante l'osservazione di livelli di qualità ossea tra i più bassi, in questo studio tutti gli impianti hanno evidenziato una buona stabilità primaria.

Prestazioni nel gruppo di pazienti diabetici19

Studio clinico prospettico caso-controllo (15 pazienti diabetici e 14 non diabetici)


100% di successo nel gruppo di pazienti diabetici dopo 2 anni

Alterazioni ossee simili a quelle delle persone sane

Nonostante l'osservazione di livelli di qualità ossea tra i più bassi, in questo studio tutti gli impianti hanno evidenziato una buona stabilità primaria.

Ricercatori principali dello studio

L’opinione dei medici

Nei fumatori l'uso di impianti è frequentemente associato a elevate percentuali di insuccesso, rischio di infezioni post-operatorie e perdita di osso marginale.29

SLActive® - alta predicibilità nei fumatori

  • Un recente studio clinico sulla comparazione delle prestazioni di SLActive® in gruppi di pazienti fumatori e non fumatori ha evidenziato eccellenti risultati nell'uso di SLActive®: ​
  • 96 pazienti, 130 impianti SLActive®, follow-up di 5 anni, tasso di sopravvivenza del 100%

Prestazioni nel gruppo di pazienti fumatori30

Studio clinico prospettico caso-controllo (47 pazienti fumatori e 49 non fumatori)


Domande? Contattaci.

Accordo sull’uso dei dati*
Riscrivere il codice soprastante.

Bibliografia

* Criteri di successo secondo Buser D. et al. Long-term stability of osseointegrated implants in augmented bone: A 5-year prospective study in partially edentulous patients. Int J Periodont Restor Dent. 2002; 22: 108–17.
** Adeguamento con esclusione dei pazienti deceduti a causa di mortalità per cancro.

1 Straumann SLActive implants compared to Straumann SLA implants. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011 Apr;22(4):349-56. doi: 10.1111/j.1600-0501.2011.02172.x; Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research A, 76(2):323-334, 2006. ; De Wild M. Superhydrophilic SLActive® implants. Straumann document 151.52, 2005 ; Katharina Maniura. Laboratory for Materials – Biology Interactions Empa, St. Gallen, Switzerland Protein and blood adsorption on Ti and TiZr implants as a model for osseointegration. EAO 22nd Annual Scientific Meeting, October 17 – 19 2013, Dublin ; Schwarz, F., et al., Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive®) and conventional SLA® titanium implants: an immunohistochemical study in dogs. J Clin.Periodontol. 35.1 (2008): 64–75. ; Rausch-fan X, Qu Z, Wieland M, Matejka M, Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dental Materials 2008 Jan;24(1):102-10. Epub 2007 Apr 27. ; Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA® titanium implants: Preliminary results of a pilot study in dogs. Clinical Oral Implants Research, 11(4): 481-488, 2007. Raghavendra S, Wood MC, Taylor TD. Int. J. Oral Maxillofac. Implants. 2005 May–Jun;20(3):425–31. 9 Oates TW, Valderrama P, Bischof M, Nedir R, Jones A, Simpson J, Toutenburg H, Cochran DL. Enhanced implant stability with a chemically modified SLA® surface: a randomized pilot study. Int. J. Oral Maxillofac. Implants. 2007;22(5):755–760.
2 Nicolau P, Guerra F, Reis R, Krafft T, Benz K, Jackowski J. 10-year outcomes with immediate and early loaded implants with a chemically modified SLA surface. Quintessence Int. 2018 Dec 18:2-12.
3 Patients treated with dental implants after surgery and radio-chemotherapy of oral cancer. Heberer S, Kilic S, Hossamo J, Raguse J-D, Nelson K. Rehabilitation of irradiated patients with modified and conventional sandblasted, acid-etched implants: preliminary results of a split-mouth study. Clin. Oral Impl. Res. 22, 2011; 546–551.
4 Yerit, K., Posch, M., Seemann, M., Hainich, S., Dortbudak, O., Turhani, D., Ozyuvaci, H., Watzinger, R. and Ewers, R. (2006) Implant Survival in Mandibles of Irradiated Oral Cancer Patients. Clinical Oral Implants Research, 17, 337-344. http://dx.doi.org/10.1111/j.1600-0501.2005.01160.x.
5 Verdonck, H.W.D., Meijer, G.J., Laurin, T., Nieman, F.H.M., Stoll, C., Riediger, D., Stoelinga, P.J.W. and de Baat, C. (2007) Assessment of Vascularity in Irradiated and Non-Irradiated Maxillary and Mandibular Alveolar Minipig Bone Using Laser Doppler Flowmetry. International Journal of Oral Maxillofacial Implants, 22, 774-778.
6 Hu, W.W., Ward, B.B., Wang, Z. and Krebsbach, P.H. (2010) Bone Regeneration in Defects Compromised by Radiotherapy. Journal of Dental Research, 89, 77-81. http://dx.doi.org/10.1177/0022034509352151.
7 Wang, R., Pillai, K. and Jones, P.K. (1998) Dosimetric Measurements of Scatter Radiation from Dental Implants in Stimulated Head and Neck Radiotherapy. International Journal of Oral Maxillofacial Implants, 13, 197-203.
8 Grotz, K.A., Al-Nawas, B., Piepkorn, B., Reichert, T.E., Duschner, H. and Wagner, W.(1999) Micromorphological Findings in Jaw Bone after Radiotherapy. Mund-, Kiefer- und Gesichtschirurgie, 3, 140-145.
9 Chambrone L, Mandia J, Shibli JA, Romito GA, Abrahao M. Dental Implants Installed in Irradiated Jaws: A Systematic Review. Journal of Dental Research. 2013;92(12 Suppl):119S-130S. doi:10.1177/0022034513504947.
10 Shugaa-Addin B, Al-Shamiri H-M, Al-Maweri S, Tarakji B. The effect of radiotherapy on survival of dental implants in head and neck cancer patients. Journal of Clinical and Experimental Dentistry. 2016;8(2):e194-e200. doi:10.4317/jced.52346.
11 Nooh N. Dental implant survival in irradiated oral cancer patients: a systematic review of the literature. Int J Oral Maxillofac Implants. 2013 Sep-Oct;28(5):1233-42. doi: 10.11607/jomi.3045.
12 Dholam KP, Gurav SV. Dental implants in irradiated jaws: A literature review. J Can Res Ther [serial online] 2012 [cited 2016 Aug 17];8:85-93. Available from: http://www.cancerjournal.net/text.asp?2012/8/6/85/92220.
13 Nelson, K., Stricker, A., Raguse, J.-D. and Nahles, S. (2016), Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: a clinical clarification. J Oral Rehabil, 43: 871–872. doi:10.1111/joor.12434
14 C. NACK, J.-D. RAGUSE, A. STRICKER , K. NELSON & S. NAHLES. Rehabilitation of irradiated patients with chemically modified and conventional SLA implants: five-year follow-up. Journal of Oral Rehabilitation 2015 42; 57—64.
15 Devlin H, Garland H, Sloan P. Healing of tooth extraction sockets in experimental diabetes mellitus. J. of Oral Maxillofac. Surg. 1996; 54:1087-1091
16 Wang F1, Song YL, Li DH, Li CX, Wang Y, Zhang N, Wang BG. Type 2 diabetes mellitus impairs bone healing of dental implants in GK rats. Diabetes Res Clin Pract. 2010; 88:e7-9.
17 IDF Diabetes Atlas, 7th Edition, 2015 http://www.diabetesatlas.org/.
18 US Centers for Disease Control and Prevention. Diabetes 2014 report card. Available from: www.cdc.gov/diabetes/library/reports/congress.html. Accessed September 2015.
19 Cabrera-Domínguez J, Castellanos-Cosano L, Torres-Lagares D, Machuca-Portillo G. A Prospective Case-Control Clinical Study of Titanium-Zirconium Alloy Implants with a Hydrophilic Surface in Patients with Type 2 Diabetes Mellitus. Int J Oral Maxillofac Implants. 2017 Sep/Oct;32(5):1135-1144. doi: 10.11607/jomi.5577; Cabrera-Domínguez J. A prospective, two-year clinical trial of titanium-zirconium alloy implants (Roxolid® Straumann®) with hydrophilic surface (SLActive®) in patients with Type 2 Diabetes Mellitus. presented during 26th Annual Scientific Meeting of the European Association of Osseointegration – 5-7 Oct 2017, Madrid, Spain.
20 Hotchkiss KM, Ayad NB, Hyzy SL, Boyan BD, Olivares-Navarrete R. Dental implant surface chemistry and energy alter macrophage activation in vitro. Clin. Oral Impl. Res. 00, 2016, 1–10. doi: 10.1111/clr.12814.
21 Lee R, Hamlet SM, Ivanovski S. The influence of titanium surface characteristics on macrophage phenotype polarization during osseous healing in type I diabetic rats: A pilot study. Clin Oral Impl Res (accepted 4/8/2016).
22 El Chaar E, Zhang L, Zhou Y, et al. Osseointegration of Superhydrophilic Implants Placed in Defect Grafted Bones. International Journal of Oral & Maxillofacial Implants . Mar/Apr2019, Vol. 34 Issue 2, p443-450
23 Müller E, Rottmar M, Guimond S, Tobler U, Stephan M, Berner S, Maniura K The interplay of surface chemistry and (nano-)topography defines the osseointegrative potential of Roxolid® dental implant surfaces. eCM Meeting Abstracts 2017, Collection 3; SSB+RM (page 31).
24 EMPA (2017) Report additional experiments: Impact of RXD SLA, RXD SLAnano, RXD SLActive, and RXD pmod SLA surfaces on protein adsorption, blood coagulation, and osteogenic differentiation of HBCs. Final report: Impact of RXD SLA, RXD SLAnano, RXD SLActive, and RXD pmod SLA surfaces on protein adsorption, blood coagulation, and osteogenic differentiation of HBCs. EMPA, Swiss Federal Laboratories for Materials Science and Technology (data on file).
25Stavropoulos A et al. Greater Osseointegration Potential with Nanostructured Surfaces on TiZr: Accelerated vs. Real-Time Ageing. Materials (Basel). 2021 Mar 29;14(7):1678.
26 Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral maxillofac Implants 2009: 24:63-74
27 Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. 2015. The role of nanostructures and hydrophilicity in osseointegration: In-vitro protein-adsorption and blood-interaction studies. J Biomed Mater Res Part A2015:103A:2661–2672.
28 Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S. Nanostructures and hydrophilicity influence osseointegration – A biomechanical study in the rabbit tibia. Clin. Oral Impl. Res. 25, 2014, 1041–1050doi: 10.1111/clr.12213
29 Chrcanovic BR, Albrektsson T, Wennerberg A Smoking and dental implants: A systematic review and meta-analysis. J Dent. 2015 May;43(5):487-98
30 Alsahhap A et al. Survival of Titanium-Zirconium and Titanium Dental Implants in Cigarette-smokers and Never-smokers: A 5-Year Follow-up. Chin J Dent Res. 2019;22(4):265-272
31 Hotchkiss KM et al. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Mater. 2019 Jan;35(1):176-184.
32 Hsu JT, Shen YW, Kuo CW, Wang RT, Fuh LJ, Huang HL. Impacts of 3D bone-to- implant contact and implant diameter on primary stability of dental implant. J Formos Med Assoc. 2017 Aug;116(8):582-590. ; Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res. 1991 Jul;25(7):889-902 ; Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620. ; Goyal N., Priyanka R. K. Effect of various implant surface treatments on osseointegration – a literature review. Indian Journal of Dental Sciences. 2012;4:154–157